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ABSTRACT 

This paper deals with an inverse problem for the biharmonic equation to find an unknown 

boundary in the plane by using additional information assumed on the remaining known 

part of the boundary. As a by-product, we can uniquely determine the solution everywhere 

in its domain of definition by supposing that the available data have Fourier expansions. 

The question of the existence and uniqueness of this inverse problem will be investigated, 

and we will conclude with some analytical examples to ensure the validity of this study. 
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INTRODUCTION 

In mechanics, physics, and many engineering applications, the biharmonic equation is used 

as a governing equation to describe: the deformation of thin plates, the motion of fluids, 

free boundary problems, non-linear elasticity, and problems related to blending surfaces. 

Several implementations of the 2D biharmonic problem have been consecrated in simply 

and multiply-connected regions (see, e.g., [3, 5, 1, 8, 9, 21, 13, 19, 22, 4, 10, 12]). 

Boundary conditions are essential and extremely important constraints for solving a 

boundary value problem. In order to study the biharmonic problem, various boundary 

conditions are adopted, e.g., the Dirichlet problem [17, 19], the Neumann problem [9], the 

mixed problem [6, 8], the Navier boundary conditions [13], the Riquier-Neumann boundary 

conditions, the Robin boundary value problems [4] and the supported boundary condition, 

see [14, 10, 12]. 

These represent an important class of inverse problems known to be generally ill-posed, in 

which the existence, uniqueness, and stability of their solutions are not always guaranteed 

(see, e.g., [5, 1, 11, 13, 16, 4]). In many experimental cases, the boundary conditions of the 

considered problem domain are partially or entirely unknown, which cannot be measured 

because of physical difficulties or geometrical inaccessibility. Here, direct methods are 

complicated to apply. 

Regarding the biharmonic equation, it should be pointed out that the presence of points 

where the type of boundary conditions change usually leads to local singularities in the 

solution [14]. This surely puts us in the context of identification problems related to the 

detection of unknown boundaries, which are essential in many engineering applications, 

such as detection of corrosion [6], determining the surface of a submarine [2], detecting the 

boundary of cracks [3, 6]. Our work will focus on the biharmonic equation with several 

boundary conditions to find a set on which the solution and a specific combination of its 

derivatives (or a specific combination of its derivatives) vanish. Here, the existence and the 

uniqueness will be investigated. 
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Modeling and problem formulation 

Let Ω ⊂ ℝ2, be a bounded doubly-connected domain with piece-wise smooth boundary 

𝜕Ω = Γ𝑚 ∪ Γ𝑐, where Γ𝑚 and Γ𝑐 are two given curves, smooth and closed of class 𝐶2, by 𝑛 

we denote the outward unit normal to 𝜕Ω. Let 𝑢 ∈ 𝐶4(Ω) ∩ 𝐶3(Ω̅) be a solution of the 

following biharmonic equation:  

 𝚫𝟐𝒖 = 𝟎,        𝒊𝒏  𝛀 (1.1) 

that is equivalent to system of equations [4]:  

{
𝚫𝒖 = 𝒘,        𝒊𝒏  𝛀
𝚫𝒘 = 𝟎,        𝒊𝒏  𝛀

 (1.2) 

 

with mixed boundary conditions given on the accessible part Γ𝑚 of the boundary by:  

{
 
 

 
 
𝒖 = 𝒖𝟎,        𝒐𝒏  𝚪𝒎
𝝏𝒖

𝝏𝒏
= 𝒖𝟏,        𝒐𝒏  𝚪𝒎

𝒘 = 𝒖𝟐,        𝒐𝒏  𝚪𝒎
𝝏𝒘

𝝏𝒏
= 𝒖𝟑,        𝒐𝒏  𝚪𝒎

 (1.3) 

Where 
𝜕

𝜕𝑛
 denote the outward unit normal to 𝜕Ω. We assume that Γ𝑚 is an internal curve and 

Γ𝑐 is an external curve, both have polar coordinates representations of the form 𝑟 = 𝑓(𝜃), 
where 𝑓 is a differentiable function and 2𝜋-periodic. 

This mathematical model is well known in 2D stokes flows, and in elasticity, where the 

functions 𝑢 and 𝑤 represent the stream function and vorticity in Stokes flows, whilst they 

represent the deflection and bending moment in elasticity [5, 9]. 

In [16], it is presented that, if 𝑢 and its normal derivative 
𝜕𝑢

𝜕𝑛
 or 𝑢 and 𝑤 or 𝑢 and 

𝜕𝑤

𝜕𝑛
 are 

prescribed at all points of the boundary 𝜕Ω, this enables us to determine uniquely the solution 

𝑢 everywhere in its definition domain Ω, then it is well-posed direct problem [6, 8]. 

However, in the practice it is not always possible to specify the boundary conditions at all 

points on the boundary of the considered domain of the solution and some other boundary 

information may be given elsewhere [16, 7, 4]. In this case, the problem is called an inverse 

problem for the biharmonic equation which is ill-posed. 

In what follows, we assume that Γ𝑚 is known, and Γ𝑐 is unknown. Our approach considers 

the situation where boundary conditions 𝑢, 
𝜕𝑢

𝜕𝑛
, Δ𝑢, 

𝜕Δ𝑢

𝜕𝑛
 are given on the part Γ𝑚 of the 

boundary, and the unknown part Γ𝑐 is assumed to have an additional information. The 

problem (1.1)-(1.3) admits a unique solution 𝑢 for a compatible data on the part Γ𝑚 of the 

boundary [8]. 

The inverse problem we are consider with is: given Γ𝑚, 𝑢0, 𝑢1, 𝑢2, and 𝑢3. Find the shape 

Γ𝑐 such as one of the following boundary conditions is satisfy:  

𝒖 =
𝝏𝒖

𝝏𝒏
= 𝟎,        𝒐𝒏  𝚪𝒄  (1.4) 

Or  

𝒖 = 𝒘 = 𝟎,        𝒐𝒏  𝚪𝒄      (1.5) 

Or  
𝝏𝒖

𝝏𝒏
= 𝒘 = 𝟎,        𝒐𝒏  𝚪𝒄  

    (1.6) 

 

 Which correspond to the homogeneous Dirichlet boundary condition, homogeneous Navier 

boundary condition also called (simply supported constraint boundary condition), and the 

homogeneous mixed boundary condition, respectively (see [9, 13, 14, 10, 12]). 

This inverse problem is usually encountered in elastic plates, for example, finding cracks in 

a medium from measurements of an elastic field on a surface of the medium [3, 6, 14]. 

Many articles are devoted to detecting a boundary for the problem (1.1)-(1.3). For example, 

in [3], it is presented a method to find an unknown boundary for the biharmonic equation in 

the half open plane by using the Fourier transformation of data. Recently, in [6], the 

fundamental solution in combination with the minimization method is used to determine an 

unknown sub-boundary. However, the existence and the uniqueness were not investigated. 

It is known that [3, 6], if we just have 𝑢 = 0 on Γ𝑐, and in this case it is necessary to determine 

a perfectly conductive boundary crack Γ𝑐. But the uniqueness of Γ𝑐 cannot be guaranteed. 

The significance of our investigation is to prescribe the solution 𝑢 and their normal derivative 
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on Γ𝑐 as indicated in (1.4), or 𝑢 and 𝑤 on Γ𝑐 as indicated in (1.5), or the normal derivative of 

𝑢 and 𝑤 as indicated in (1.6). In this case, the uniqueness of Γ𝑐 is guaranteed under conditions 

assumed on the available data (see the rest of this article). 

Theoretical results are standard and well known for the Laplace case (see [23]). On the other 

hand, in [2], the author proposed a simple analytical method based on the Fourier series to 

find an unknown curve from the extra boundary conditions, in addition, he has used the 

properties of the harmonic function to study the existence and uniqueness. We follow this 

work and we extend the techniques to (1.1)-(1.3)-(1.4)-(1.5)-(1.6). 

For the outline of this paper, in the second part, we consider the polar coordinate 

representation of the solution to the biharmonic equation given in [18], and assume that the 

available Cauchy data have a Fourier expansion. Matching the boundary conditions leads to 

a linear system equations for coefficients to be determined. In the third section, we briefly 

discuss the open issue of existence and uniqueness, and we conclude with analytical 

examples to show the feasibility of this study. 

 

Preliminary and basic results 

It is advantageous to formulate elliptic problems in the plane in terms of polar coordinates 

[5, 6]. So, the following variable change, 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃 are naturally introduced on 

the problem (1.1)-(1.3), where the radial coordinate is denoted by 𝑟 and the angular 

coordinate is denoted by 𝜃. Therefore, the system of equations (1.2) in polar coordinates 

representation is given as:  

𝝏𝟐𝒖

𝝏𝒓𝟐
+
𝟏

𝒓

𝝏𝒖

𝝏𝒓
+
𝟏

𝒓𝟐
𝝏𝟐𝒖

𝝏𝜽𝟐
= 𝒘     (2.1) 

𝝏𝟒𝒖

𝝏𝒓𝟒
+
𝟐

𝒓

𝝏𝟑𝒖

𝝏𝒓𝟑
−
𝟏

𝒓𝟐
𝝏𝟐𝒖

𝝏𝒓𝟐
+
𝟏

𝒓𝟑
𝝏𝒖

𝝏𝒓
−
𝟐

𝒓𝟑
𝝏𝟑𝒖

𝝏𝒓𝜽𝟐
+
𝟐

𝒓𝟐
𝝏𝟒𝒖

𝝏𝒓𝟐𝜽𝟐
+
𝟒

𝒓𝟒
𝝏𝟐𝒖

𝝏𝜽𝟐
+
𝟏

𝒓𝟒
𝝏𝟒𝒖

𝝏𝜽𝟒
= 𝟎     (2.2) 

 

In 2D problems, the biharmonic equation can be solved by a repeated application of variables 

separation procedures [18]. Therefore, the complete general solution of the biharmonic 

equation applicable to the plane elastic in a doubly connected domain was given by Michell 

(1863 -1940) [5], as follows:  

 

𝒖(𝒓, 𝜽) = 𝒄𝟎,𝟏 + 𝒄𝟎,𝟐𝒓
𝟐 + 𝒄𝟎,𝟑𝐥𝐧(𝒓) + 𝒄𝟎,𝟒𝒓

𝟐𝐥𝐧(𝒓) + 𝒅𝟎,𝟑𝜽 + 𝒅𝟎,𝟒𝒓
𝟐𝜽

    + (
𝒄𝟏,𝟏
𝒓
+ 𝒄𝟏,𝟐𝒓 + 𝒄𝟏,𝟑𝒓

𝟑 + 𝒄𝟏,𝟒(𝒓𝐥𝐧𝒓) + 𝒄𝒓𝜽) 𝐜𝐨𝐬(𝜽)

    + (
𝒅𝟏,𝟏
𝒓
+ 𝒅𝟏,𝟐𝒓 + 𝒅𝟏,𝟑𝒓

𝟑 + 𝒅𝟏,𝟒(𝒓𝐥𝐧𝒓) + 𝒅𝒓𝜽) 𝐬𝐢𝐧(𝜽)

    +∑

∞

𝒏=𝟐

(𝒄𝒏,𝟏𝒓
−𝒏 + 𝒄𝒏,𝟐𝒓

𝒏 + 𝒄𝒏,𝟑𝒓
𝟐−𝒏 + 𝒄𝒏,𝟒𝒓

𝟐+𝒏)𝐜𝐨𝐬(𝒏𝜽)

    +∑

∞

𝒏=𝟐

(𝒅𝒏,𝟏𝒓
−𝒏 + 𝒅𝒏,𝟐𝒓

𝒏 + 𝒅𝒏,𝟑𝒓
𝟐−𝒏 + 𝒅𝒏,𝟒𝒓

𝟐+𝒏)𝐬𝐢𝐧(𝒏𝜽)

 (2.3) 

 

where 𝑐, 𝑑, 𝑎𝑛𝑑  𝑐𝑛,1, 𝑐𝑛,2, 𝑐𝑛,3, 𝑐𝑛,4, 𝑑𝑛,1, 𝑑𝑛,2, 𝑑𝑛,3, 𝑑𝑛,4, 𝑓𝑜𝑟  𝑛 ∈ ℕ, are unknown 

coefficients to be determined uniquely from the uniqueness of the solution of the Cauchy 

problem (1.1)-(1.3), and by satisfying the boundary conditions [8, 15, 5]. 

Without loss of generality, we assume that Γ𝑚 is the unit circle and Γ𝑐 is a curve that contain 

Γ𝑚. The functions 𝑢0(𝜃), 𝑢1(𝜃), 𝑢2(𝜃), 𝑢3(𝜃) are assumed to be 𝐿2 integrable on the 

interval [0,2𝜋]. Hence, all of them admit development in terms of the Fourier expansion [2, 

17]  

 

𝐮𝟎 = 𝐀𝟎 + ∑
∞
𝐧=𝟏 𝐀𝐧𝐜𝐨𝐬(𝐧𝛉) + 𝐁𝐧𝐬𝐢𝐧(𝐧𝛉)

𝐮𝟏 = 𝐀𝟎′ + ∑
∞
𝐧=𝟏 𝐀𝐧′𝐜𝐨𝐬(𝐧𝛉) + 𝐁𝐧′𝐬𝐢𝐧(𝐧𝛉)

𝐮𝟐 = 𝐀′′𝟎 + ∑
∞
𝐧=𝟏 𝐀𝐧′′𝐜𝐨𝐬(𝐧𝛉) + 𝐁𝐧′′𝐬𝐢𝐧(𝐧𝛉)

𝐮𝟑 = 𝐀′′′𝟎 + ∑
∞
𝐧=𝟏 𝐀𝐧′′′𝐜𝐨𝐬(𝐧𝛉) + 𝐁𝐧′′′𝐬𝐢𝐧(𝐧𝛉)

 (2.4) 

 

In order to compute the coefficients, we restrict (2.3) to the part Γ𝑚 of the boundary 𝜕Ω 

requiring that 𝑢|Γ𝑚 = 𝑢0, 
𝜕𝑢

𝜕𝑛
|Γ𝑚 = 𝑢1, Δ𝑢|Γ𝑚 = 𝑢2, 

𝜕Δ𝑢

𝜕𝑛
|Γ𝑚 = 𝑢3, and by matching the 

boundary conditions (2.4) one can obtain that:  
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{
 
 

 
 
𝒄𝟎,𝟏 + 𝒄𝟎,𝟐 = 𝑨𝟎                                

𝒄𝟏,𝟏 + 𝒄𝟏,𝟐 + 𝒄𝟏,𝟑 = 𝑨𝟏                                

𝒄𝒏,𝟏 + 𝒄𝒏,𝟐 + 𝒄𝒏,𝟑 + 𝒄𝒏,𝟒 = 𝑨𝒏                                        𝒏 ≥ 𝟐

𝒅𝟏,𝟏 + 𝒅𝟏,𝟐 + 𝒅𝟏,𝟑 = 𝑩𝟏                                

𝒅𝒏,𝟏 + 𝒅𝒏,𝟐 + 𝒅𝒏,𝟑 + 𝒅𝒏,𝟒 = 𝑩𝒏                                        𝒏 ≥ 𝟐

, (2.5) 

{
 
 

 
 
𝟐𝒄𝟎,𝟐 + 𝒄𝟎,𝟑 + 𝒄𝟎,𝟒 = 𝑨𝟎′

−𝒄𝟏,𝟏 + 𝒄𝟏,𝟐 + 𝟑𝒄𝟏,𝟑 + 𝒄𝟏,𝟒 = 𝑨𝟏′

−𝒏𝒄𝒏,𝟏 + 𝒏𝒄𝒏,𝟐 + (𝟐 − 𝒏)𝒄𝒏,𝟑 + (𝟐 + 𝒏)𝒄𝒏,𝟒 = 𝑨𝒏′         𝒏 ≥ 𝟐

−𝒅𝟏,𝟏 + 𝒅𝟏,𝟐 + 𝟑𝒅𝟏,𝟑 + 𝒅𝟏,𝟒 = 𝑩𝟏′

−𝒏𝒅𝒏,𝟏 + 𝒏𝒅𝒏,𝟐 + (𝟐 − 𝒏)𝒅𝒏,𝟑 + (𝟐 + 𝒏)𝒅𝒏,𝟒 = 𝑩𝒏′         𝒏 ≥ 𝟐

, (2.6) 

{
 
 

 
 
𝟒𝒄𝟎,𝟐 + 𝟒𝒄𝟎,𝟒 = 𝑨𝟎′′

𝟖𝒄𝟏,𝟑 + 𝟐𝒄𝟏,𝟒 = 𝑨𝟏′′

(𝟒 − 𝟒𝒏)𝒄𝒏,𝟑 + (𝟒 + 𝟒𝒏)𝒄𝒏,𝟒 = 𝑨𝒏′′                                 𝒏 ≥ 𝟐

𝟖𝒅𝟏,𝟑 + 𝟐𝒅𝟏,𝟒 = 𝑩𝟏′′

(𝟒 − 𝟒𝒏)𝒅𝒏,𝟑 + (𝟒 + 𝟒𝒏)𝒅𝒏,𝟒 = 𝑩𝒏′′                                 𝒏 ≥ 𝟐

 (2.7) 

{
 
 

 
 
𝟒𝒄𝟎,𝟒 = 𝑨𝟎′′′

𝟖𝒄𝟏,𝟑 − 𝟐𝒄𝟏,𝟒 = 𝑨𝟏′′′

(𝟒𝒏𝟐 − 𝟒𝒏)𝒄𝒏,𝟑 + (𝟒𝒏
𝟐 + 𝟒𝒏)𝒄𝒏,𝟒 = 𝑨𝒏′′′                         𝒏 ≥ 𝟐

𝟖𝒅𝟏,𝟑 − 𝟐𝒅𝟏,𝟒 = 𝑩𝟏′′′

(𝟒𝒏𝟐 − 𝟒𝒏)𝒅𝒏,𝟑 + (𝟒𝒏
𝟐 + 𝟒𝒏)𝒅𝒏,𝟒 = 𝑩𝒏′′′                         𝒏 ≥ 𝟐

, (2.8) 

 

 

 and 𝑐 = 𝑑 = 𝑑0,1 = 𝑑0,2 = 𝑑0,3 = 𝑑0,4 = 0. 

By solving the systems (2.5)-(2.6)-(2.7)-(2.8) then we obtained that:  

 

𝑐0,1 = 𝐴0 +
1

4
(𝐴0

′′′ − 𝐴0
′′), 𝑑0,1 = 𝑑0,2 = 𝑑0,3 = 𝑑0,4 = 0

𝑐0,2 =
1

4
(𝐴0

′′ − 𝐴0
′′′), 𝑐 = 0

𝑐0,3 = 𝐴0
′ +

1

4
(𝐴0

′′′ − 2𝐴0
′′) 𝑑 = 0

𝑐0,4 =
1

4
𝐴0
′′′

𝑐1,1 =
1

2
𝐴1 −

1

2
𝐴′1 +

1

16
(3𝐴1

′′ − 𝐴1
′′′), 𝑑1,1 =

1

2
𝐵1 −

1

2
𝐵′1 +

1

16
(3𝐵1

′′ − 𝐵1
′′′)

𝑐1,2 =
1

2
𝐴1 +

1

2
𝐴′1 −

1

4
𝐴1
′′, 𝑑1,2 =

1

2
𝐵1 +

1

2
𝐵′1 −

1

4
𝐵1
′′

𝑐1,3 =
1

16
(𝐴1

′′ + 𝐴1
′′′), 𝑑1,3 =

1

16
(𝐵1

′′ + 𝐵1
′′′)

𝑐1,4 =
1

4
(𝐴1

′′ − 𝐴1
′′′), 𝑑1,4 =

1

4
(𝐵1

′′ − 𝐵1
′′′)

𝑐𝑛,1 =
1

2
𝐴𝑛 −

1

2𝑛
𝐴𝑛′ +

1−𝑛

𝑛
𝑐𝑛,3 +

1

𝑛
𝑐𝑛,4, 𝑑𝑛,1 =

1

2
𝐵𝑛 −

1

2𝑛
𝐵𝑛′ +

1−𝑛

𝑛
𝑑𝑛,3 +

1

𝑛
𝑑𝑛,4

𝑐𝑛,2 =
1

2
𝐴𝑛 +

1

2𝑛
𝐴𝑛′ −

1

𝑛
𝑐𝑛,3 −

𝑛+1

𝑛
𝑐𝑛,4, 𝑑𝑛,2 =

1

2
𝐵𝑛 +

1

2𝑛
𝐵𝑛′ −

1

𝑛
𝑑𝑛,3 −

𝑛+1

𝑛
𝑑𝑛,4

𝑐𝑛,3 =
1

8𝑛2−8𝑛
(𝐴𝑛

′′′ − 𝑛𝐴𝑛
′′), 𝑑𝑛,3 =

1

8𝑛2−8𝑛
(𝐵𝑛

′′′ − 𝑛𝐵𝑛
′′)

𝑐𝑛,4 =
1

8𝑛2+8𝑛
(𝑛𝐴𝑛

′′ + 𝐴𝑛
′′′), 𝑑𝑛,4 =

1

8𝑛2+8𝑛
(𝑛𝐵𝑛

′′ + 𝐵𝑛
′′′)

            (2.9) 

 

Therefore, the solution of the boundary value problem (1.1)-(1.3) in the region between Γ𝑚 

and Γ𝑐 is given as follows:  

 

𝒖(𝒓, 𝜽) = 𝒄𝟎,𝟏 + 𝒄𝟎,𝟐𝒓
𝟐 + 𝒄𝟎,𝟑𝐥𝐧(𝒓) + 𝒄𝟎,𝟒𝒓

𝟐𝐥𝐧(𝒓)

    + (
𝒄𝟏,𝟏
𝒓
+ 𝒄𝟏,𝟐𝒓 + 𝒄𝟏,𝟑𝒓

𝟑 + 𝒄𝟏,𝟒𝒓𝐥𝐧𝒓) 𝐜𝐨𝐬(𝜽)

    + (
𝒅𝟏,𝟏
𝒓
+ 𝒅𝟏,𝟐𝒓 + 𝒅𝟏,𝟑𝒓

𝟑 + 𝒅𝟏,𝟒𝒓𝐥𝐧𝒓) 𝐬𝐢𝐧(𝜽)

    +∑

∞

𝒏=𝟐

(𝒄𝒏,𝟏𝒓
−𝒏 + 𝒄𝒏,𝟐𝒓

𝒏 + 𝒄𝒏,𝟑𝒓
𝟐−𝒏 + 𝒄𝒏,𝟒𝒓

𝟐+𝒏)𝐜𝐨𝐬(𝒏𝜽)

    +∑

∞

𝒏=𝟐

(𝒅𝒏,𝟏𝒓
−𝒏 + 𝒅𝒏,𝟐𝒓

𝒏 + 𝒅𝒏,𝟑𝒓
𝟐−𝒏 + 𝒅𝒏,𝟒𝒓

𝟐+𝒏)𝐬𝐢𝐧(𝒏𝜽)

 (2.10) 
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It should be pointed out that, if 𝑢2 = 𝑢3 = 0, then by substituting in (2.4) and (2.9) one can 

obtain that:  

 

𝑢(𝑟, 𝜃) = 𝑐0,1 + 𝑐0,3ln(𝑟) + ∑
∞
𝑛=1 (𝑐𝑛,1𝑟

−𝑛 + 𝑐𝑛,2𝑟
𝑛)cos(𝑛𝜃) + (𝑑𝑛,1𝑟

−𝑛 + 𝑑𝑛,2𝑟
𝑛)sin(𝑛𝜃) 

 which corresponds to the solution of the harmonic equation in a doubly connected domain. 

 

Existence and uniqueness 

Taking a trivial case where, 𝑢0 = 𝑢1 = 𝑢2 = 𝑢3 = 0, and from (2.9), therefore 𝑢 ≡ 0 in Ω. 

That means there exists an infinite number of portions Γ𝑐 which satisfy the equations (1.4)-

(1.5)-(1.6). Therefore, we can confine ourselves in a favorable situation by assuming that Γ𝑚 

is known, and |𝑢0| + |𝑢1| + |𝑢2| + |𝑢3| ≠ 0 ,i.e. at least one of the available data does not 

vanish identically. 

In order to examine the existence and uniqueness of the non-accessible part Γ𝑐, it is necessary 

to examine each of the equations (1.4), (1.5) and (1.6). 

The existence  

If (1.4) is satisfy, then, 𝑢 =
𝜕𝑢

𝜕𝑛
= 0 on Γ𝑐 and 𝑢0 = 𝑢1 = 0, i.e., 𝑢 =

𝜕𝑢

𝜕𝑛
= 0 on 𝜕Ω, 

therefore, 𝑢 = 0 in Ω and 𝑢0 = 𝑢1 = 𝑢2 = 𝑢3 = 0, however, this provides a contradiction 

if 𝑢2 ≠ 0 and 𝑢0 = 𝑢1 = 0, for example. 

If (1.5) is satisfy, then, 𝑢 = 𝑤 = 0 on Γ𝑐 and 𝑢0 = 𝑢2 = 0, i.e., 𝑢 = 𝑤 = 0 on 𝜕Ω. The 

maximum-minimum principle for harmonic functions implies that 𝑤 = 0 in Ω, then, Δ𝑢 =
0 in Ω and 𝑢 = 0 on 𝜕Ω, therefore, 𝑢 = 0 in Ω and 𝑢0 = 𝑢1 = 𝑢2 = 𝑢3 = 0 however, this 

provides a contradiction if 𝑢1 ≠ 0 and 𝑢0 = 𝑢2 = 0, for example. 

If (1.6) is satisfy, then, 
𝜕𝑢

𝜕𝑛
= 𝑤 = 0 on Γ𝑐 and 𝑢1 = 𝑢2 = 0, i.e., 

𝜕𝑢

𝜕𝑛
= 𝑤 = 0 on 𝜕Ω. We 

have already obtained that Δ𝑢 = 0 in Ω, and satisfy 
𝜕𝑢

𝜕𝑛
= 0 on 𝜕Ω. Thus, 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in 

Ω and consequently 𝑢0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑢1 = 𝑢2 = 𝑢3 = 0. However, this contradicts if 

𝑢0 ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑢1 = 𝑢2 = 0, for example. From the above discussion, the following 

remark can be cited:  

Theorem 3.1: The existence of a solution to the inverse problem (1.1)-(1.3)-(1.4)-(1.5)-(1.6) 

cannot be guaranteed for arbitrary data 𝑢0, 𝑢1, 𝑢2, 𝑢3.  

The uniqueness 

The uniqueness of solution to (1.1)-(1.3)-(1.4) is guaranteed, let Γ𝑐, Γ𝑐′ two separate 

solutions, then, there exist Ω′ a domain bounded by certain parts of Γ𝑐 and Γ𝑐′, in which there 

exist a biharmonic function, 𝑢, verify Δ2𝑢 = 0 in Ω′ and 𝑢 =
𝜕𝑢

𝜕𝑛
= 0 on the boundary of Ω′, 

then 𝑢 = 0 in Ω′. This and the unique continuation property for biharmonic functions [20] 

imply that 𝑢 = 0 in it’s definition domain Ω and 𝑢0 = 𝑢1 = 𝑢2 = 𝑢3 = 0. However, this 

contradicts our assumption. (see example 3.1). we can state the following result: 

Theorem 3.2: Assume that in (1.1)-(1.4)-(1.5)-(1.6) we have 𝑢 =
𝜕𝑢

𝜕𝑛
= 0 on 𝛤𝑐 , then the data 

𝑢0, 𝑢1, 𝑢2, 𝑢3 uniquely determine 𝛤𝑐  provided that, |𝑢0| + |𝑢1| + |𝑢2| + |𝑢3| ≠ 0.  

The uniqueness of solution to (1.2)-(1.3)-(1.5) is guaranteed, let Γ𝑐, Γ𝑐′ two separate solutions 

then, there exist Ω′ a domain bounded by certain parts of Γ𝑐 and Γ𝑐′, in which there exist a 

biharmonic function ,𝑢, verify Δ2𝑢 = Δ𝑤 = 0 in Ω′ and satisfy 𝑢 = 𝑤 = 0 on the boundary 

of Ω′, now, the maximum-minimum principle for harmonic functions implies that 𝑤 = 0 in 

Ω′ and Δ𝑢 = 0 in Ω′, then, 𝑢 = 0 in Ω′. Thus, by the unique continuation property for 

harmonic functions [20] we obtain that 𝑢 = 0 in it’s definition domain Ω, and 𝑢0 = 𝑢1 =
𝑢2 = 𝑢3 = 0. However, this contradicts our assumption. (see example 3.2). We have the 

following result:  

Theorem 3.3: Suppose that in (1.2)-(1.4)-(1.5)-(1.6) we have 𝑢 = 𝑤 = 0 on 𝛤𝑐 , then 𝑢|𝛤𝑚 =

𝑢0, 
𝜕𝑢

𝜕𝑛
|𝛤𝑚 = 𝑢1, 𝑤|𝛤𝑚 = 𝑢2 and 

𝜕𝑤

𝜕𝑛
|𝛤𝑚 = 𝑢3 uniquely determine 𝛤𝑐  provided that, |𝑢0| +

|𝑢1| + |𝑢2| + |𝑢3| ≠ 0.  

 

For the uniqueness of the solution to (1.2)-(1.3)-(1.6) , let Γ𝑐, Γ𝑐 ′ two separate solutions, then, 

there exist Ω′ a domain bounded by certain parts of Γ𝑐 and Γ𝑐′, in which there exist a 

biharmonic function, 𝑢, verify Δ2𝑢 = Δ𝑤 = 0 in Ω′ and satisfy 
𝜕𝑢

𝜕𝑛
= 𝑤 = 0 on the boundary 

of Ω′, therefore, 𝑤 = 0 in Ω′, and Δ𝑢 = 0 in Ω′ and satisfy 
𝜕𝑢

𝜕𝑛
= 0 on the boundary of Ω′, 

therefore, 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in Ω′ and based on the unique property of continuity of an elliptical 

function we found 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in it’s definition domain Ω, thus, 𝑢0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑢1 =
𝑢2 = 𝑢3 = 0, then, there is at most one solution Γ𝑐 provided that 𝑢0 ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or |𝑢1| +
|𝑢2| + |𝑢3| ≠ 0, (see example 3.3), and we can state the following result:  
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Theorem 3.4: Suppose that in (1.2)-(1.4)-(1.5)-(1.6) we have 
𝜕𝑢

𝜕𝑛
= 𝑤 = 0 on 𝛤𝑐 , then 𝑢|𝛤𝑚 =

𝑢0, 
𝜕𝑢

𝜕𝑛
|𝛤𝑚 = 𝑢1, 𝑤|𝛤𝑚 = 𝑢2 and 

𝜕𝑤

𝜕𝑛
|𝛤𝑚 = 𝑢3 uniquely determine 𝛤𝑐  provided that 𝑢0 ≠

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or |𝑢1| + |𝑢2| + |𝑢3| ≠ 0.  

Determination of 𝚪𝒄 
 Suppose that 𝑟 = 𝑓(𝜃) is a representation of Γ𝑐. From (1.4), (1.5) and (1.6), we can find the 

unknown function 𝑓(𝜃) numerically, by solving the following systems of equations:  

{
𝒖(𝒇(𝜽), 𝜽) = 𝟎
𝝏𝒖

𝝏𝒏
(𝒇(𝜽), 𝜽) = 𝟎

 (3.1) 

 

if condition (1.4) is considered, and  

{
𝒖(𝒇(𝜽), 𝜽) = 𝟎

𝒘(𝒇(𝜽), 𝜽) = 𝟎
, (3.2) 

 

 if condition (1.5) is considered, and  

 

{

𝝏𝒖

𝝏𝒏
(𝒇(𝜽), 𝜽) = 𝟎

𝒘(𝒇(𝜽), 𝜽) = 𝟎
, (3.3) 

 

 if condition (1.6) is considered, by applying the formula  

𝜕𝑢

𝜕𝑛
| 𝑟=𝑓(𝜃) =

𝜕𝑢

𝜕𝑟
−
1

𝑟2
𝜕𝑢

𝜕𝜃

𝜕𝑓

𝜕𝜃
| 𝑟=𝑓(𝜃) ,      

 

  

 where  

∇𝑢 =
𝜕𝑢

𝜕𝑟
𝑒𝑟 +

1

𝑟

𝜕𝑢

𝜕𝜃
𝑒𝜃 , and  𝑛 = 𝑒𝑟 −

1

𝑟
𝑓′(𝜃)𝑒𝜃 

  

 and the vectors 𝑒𝑟 and 𝑒𝜃 are unit vectors in polar coordinates. 

Numerical examples 

In what follows, we consider that Γ𝑚 is the unit circle and we wish to find Γ𝑐. Here, we give 

the data 𝑢0, 𝑢1, 𝑢2, 𝑢3 on Γ𝑚, and we compute the coefficients from (2.9). Then, by 

substituting in (2.10), one obtains the solution 𝑢(𝑟, 𝜃) of the problem (1.1)-(1.3). 

This inverse problem is ill-posed and its numerical solution is difficult (see also [2]). For 

some simple cases, we try to describe (3.1), (3.2) and (3.3) as a transcendental equations, 

which can be solved analytically by using the inverse functions. 

 

Example 3.1:  Let 𝑢0 = −2 − 𝑒2, 𝑢1 = −2 + 2𝑒2, 𝑢2 = −4, 𝑢3 = 0. From (2.9) we obtain: 

𝑐0,1 = −𝑒2, 𝑐0,2 = −1, 𝑐0,3 = 2𝑒
2, 𝑐0,4 = 0. Therefore : 𝑢 = −𝑒2 − 𝑟2 + 2𝑒2𝑙𝑛𝑟. 

Equations (1.4) take the forms −𝑒2 − 𝑟2 + 2𝑒2ln𝑟 = 0 and −2𝑟 +
2𝑒2

𝑟
= 0, then Γ𝑐 is a 

circle of radius 𝑒 as shown in Figure 1. 

Equations (1.5) take the forms −𝑒2 − 𝑟2 + 2𝑒2ln𝑟 = 0 and Δ𝑢 = −4 ≠ 0. They have no 

common solutions. 

Equations (1.6) take the forms −2𝑟 +
2𝑒2

𝑟
= 0 and Δ𝑢 = −4 ≠ 0. They have no common 

solutions.  

 

Example 3.2:  Let 𝑢0 = −2, 𝑢1 = −3 − 𝑒
2, 𝑢2 = 4, 𝑢3 = −4. According to (2.9) we obtain 

𝑐0,1 = 0, 𝑐0,2 = 2, 𝑐0,3 = −𝑒2, 𝑐0,4 = −1. Therefore 𝑢 = 2𝑟2 − 𝑒2𝑙𝑛𝑟 − 𝑟2𝑙𝑛𝑟. 

The equations (1.4), become 2𝑟2 − 𝑒2ln𝑟 − 𝑟2ln𝑟 = 0 and 3𝑟 −
𝑒2

𝑟
− 2𝑟ln𝑟 = 0. They 

have no common solutions. 

The equations (1.5), take the forms 2𝑟2 − 𝑒2ln𝑟 − 𝑟2ln𝑟 = 0, 4 − 4ln𝑟 = 0, then Γ𝑐 is a 

circle of radius 𝑒 as shown in Figure 1. 

The equations (1.6) become 3𝑟 −
𝑒2

𝑟
− 2𝑟ln𝑟 = 0 and 4 − 4ln𝑟 = 0. They have no common 

solutions.  
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Example 3.3:  Let 𝑢0 = (
21

4
+ 4𝑙𝑛2)𝑐𝑜𝑠(𝜃), 𝑢1 = (

7

4
+ 4𝑙𝑛2)𝑐𝑜𝑠(𝜃), 𝑢2 = −6, 𝑢3 = 10. 

According to (2.9) we obtain: 𝑐1,1 = 0, 𝑐1,2 = 1 + 4𝑙𝑛2, 𝑐1,3 =
1

4
, 𝑐1,4 = −4. Therefore: 𝑢 =

[(1 + 4𝑙𝑛2)𝑟 +
𝑟3

4
− 4𝑟𝑙𝑛𝑟] 𝑐𝑜𝑠(𝜃). 

The equations (1.4), become [(1 + 4ln2)𝑟 +
𝑟3

4
− 4𝑟ln𝑟] cos(𝜃) = 0 and (−3 + 4ln2 +

3𝑟2

4
− 4ln𝑟)cos(𝜃) = 0. They have no common solutions. 

The equations (1.5), take the forms [(1 + 4ln2)𝑟 +
𝑟3

4
− 4𝑟ln𝑟] cos(𝜃) = 0 and (2𝑟 −

8

𝑟
)cos𝜃 = 0. They have no common solutions. 

The equations (1.6) become (−3 + 4ln2 +
3𝑟2

4
− 4ln𝑟)cos(𝜃) = 0 and (2𝑟 −

8

𝑟
)cos𝜃 = 0 

then Γ𝑐 is the circle of radius 2 union the dash-dotted line in the annular space. as shown in 

Figure 1b.  

 

 

 

(a) For the examples 3.1 and 3.2. (b) For the example 3.3. 

 
Figure 1: The geometric shape of boundary Γ𝑐. 

 

CONCLUSION 

We investigated a geometrical inverse problem for the biharmonic equation in the doubly 

connected domain of the plane, where the uniqueness of the solution of Cauchy’s problem 

is ascertained. Then, by measuring the Cauchy data over a specific surface, we can uniquely 

determine the solution everywhere in its domain of definition. In particular, find sets on 

which the solution and a certain combination of its derivatives (or a specific combination of 

its derivatives) vanish. 

As we are interested in inverse problems, we noted that our method of determining an 

unknown boundary is purely analytical, consisting in giving a simple solution to the problem 

and discussing the existence and uniqueness issue. In addition, we considered the ill-posed 

problem in a smooth boundary. Nevertheless, it should be mentioned that it is possible to 

extend the idea to a more complex region, as well as to develop a computational method to 

solve the inverse problem. 
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