
1 

 
 

  
 

 Ann Appl Sci.2023;2:712 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Received: 28 Apr 2023 

Revised: 07 July 2023 

Accepted: 13 July 2023 

Published: 10 Aug 2023 

 

Correspondence:  

Zhiqiang lv. College of Computer 

Science & Technology, Qingdao 

University, Qingdao 266071, China  

Email: 2019025929@qdu.edu.cn 

 

Cite this article as: Han S, Lv Z, Fu 

L. A Deep Spatiotemporal Model for 

Travel Time Prediction. Ann Appl 

Sci. 2023;2:712. 

https://doi.org/10.55085/aas.2023.712 

 

Copyright © 2023 Han S et al. This is 

an open access article distributed 

under the Creative Commons 

Attribution 4.0 International License, 

which permits unrestricted use, 

distribution, and reproduction in any 

medium, provided the original work is 

properly cited. 

 

Authors’ contributions  

The participation of each author 

corresponds to the criteria of 

authorship and contributorship 

emphasized in the 

Recommendations for the Conduct, 

Reporting, Editing, and Publication of 

Scholarly work in Medical Journals of 

the International Committee of 

Medical Journal Editors. Indeed, all 

the authors have actively participated 

in the redaction, the revision of the 

manuscript, and provided approval for 

this final revised version. 

 

Acknowledgments  

None 

 

Funding  

No funding was received from any 

organization to conduct the present 

study. 

 

Conflict of interest  

The author declares that there is no 

conflict of interest regarding the 

publication of this article. 

 

Original Research 
 

DOI: 10.55085/aas.2023.712 
 

A Deep Spatiotemporal Model for Travel Time Prediction  
 

Songyu Han1 , Zhiqiang Lv2, 3 , Liping Fu2  

1 Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA  
2 College of Computer Science & Technology, Qingdao University, Qingdao 266071, China  
3 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China  

 
 

  ABSTRACT 

Accurate and reliable travel time prediction is important for promoting the development of 

urban public transportation, ensuring public travel safety, and establishing smart cities. In 

travel time prediction, studying spatiotemporal correlation features can help us better 

understand the dynamic changes and spatial dependencies in traffic data, and it can explain the 

patterns and trends in vehicle travel. Studying the external factors that influence vehicle travel 

can help us comprehensively consider the complexity of the transportation system, and 

incorporating these factors into prediction models can enhance the accuracy and robustness of 

the models. Therefore, this article proposes a novel deep spatiotemporal model for travel time 

prediction called DeepSTM-TTP. The architecture of this model consists of three parts: spatial-

temporal convolution mechanism, external factor mechanism, and multitask learning 

mechanism. The spatiotemporal convolution mechanism is used to capture the spatiotemporal 

correlation of the trajectory external factor mechanism is used to handle the external 

information in the trajectory. A multitask learning mechanism achieves a balance between 

local path travel time prediction and whole path travel time prediction. The model fully 

considers the spatial-temporal correlation of the original GPS location sequence with external 

information. The experimental results on real datasets demonstrate that the model proposed in 

this article outperforms four well-known travel time prediction models, including a statistical 

model (HA), a machine learning model (GBDT), and two deep learning models (DeepTTE 

and DeepTTE-RNN). 

 
 

KEYWORDS: Travel time prediction; Deep Spatial-Temporal Model; Multitask learning; Deep 

learning. 
 

 

 

1. INTRODUCTION 
The traffic demand [1] is increasing with the rapid development of the urban economy and the rapid 

increase in urban population, leading to traffic congestion problems [2]. As shown in Figure 1, the cities 

(Chongqing, Guiyang, and Beijing) have become the three most congested cities in China according to 

the 2020 China Urban Traffic Report jointly released by Baidu Maps and various departments. Traffic 

congestion easily leads to accidents such as rear-end collisions, significantly affecting the operation 

efficiency of vehicles and normal travel [3]. At the same time, the emission of exhaust gas has increased 

dramatically with traffic congestion, which causes a series of environmental pollution, resource waste, 

and other problems, seriously affecting city development. 

At present, China’s urban travel modes mainly include taxis, buses, subways, and shared bicycles, but the 

most popular means of transportation are still taxis or buses [4]. Taxis are easy to use and less affected 

by geographical restrictions and save time spent parking. Buses can be used in a wide range of 

applications and basically cover the entire urban area [5]. Compared with the subway, their investment is 

small and easy to implement. And people can ride at a low price, which is generally acceptable and has a 

wide audience. These two means of transport account for the central part of public transportation and play 

an essential role in urban transport planning [6]. However, people will wait for a long time when taking 

a taxi, and they cannot know the exact arrival time of the vehicle. These situations will increase people’s 

anxiety. People will be late for work or even miss some important meetings, which will reduce people’s 

confidence in urban public transport. It is not conducive to the development of urban public transport. 

Therefore, real-time and accurate taxi travel time prediction is particularly important. 
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When people want to take a taxi, they can find the time through the time prediction system [7]. They can 

plan their trip in time, alleviating anxiety during the waiting period. In addition, drivers can choose the 

segments with shorter times according to the travel time of different roads. This can avoid traffic 

congestion and alleviate traffic pressure [8]. In addition, accurate and real-time travel time prediction can 

help the traffic department timely obtain the traffic status in a short period of time. Thus, it can reasonably 

arrange department personnel in advance and better manage traffic emergencies. This can also help prevent 

a wide range of traffic congestion and traffic accidents, improve people’s travel efficiency, and ensure 

people’s travel safety [9]. With the reduction of traffic congestion, the utilization efficiency of resources 

can be improved to a certain extent; energy waste can be avoided [10]. The emission of pollutants in 

vehicle exhaust can be reduced, which is conducive to improving urban air quality. Therefore, accurate 

travel time prediction has certain practical significance. 

In the research field of vehicle travel time prediction, this article fully considers the spatiotemporal 

correlation features of vehicle travel data and the external factors influencing vehicle travel. As a result, a 

high-accuracy spatiotemporal prediction model is constructed. Furthermore, this article introduces a 

multitask learning module to capture the feature relationships between experienced travel time and 

instantaneous travel time, further improving the accuracy of the prediction model [11]. The contributions 

of this article can be summarized as follows: 

▪ We propose a Deep Spatial-Temporal Model for Travel Time Prediction (DeepSTM-TTP) based 

on a deep spatial-temporal neural network, considering the waiting time and travel time. The 

model mainly comprises three parts: an external factor module, a spatial-temporal convolution 

module, and multitask learning [12] module.  

▪ We clean and process GPS point data and catch the passenger carrying status. The point data is 

matched to a driving trajectory of the vehicle from the no-load status to the full-load status. 

▪ We propose using the combination of experienced and instantaneous travel time to avoid the 

impact of error accumulation and data sparsity. 

▪ We conduct extensive experiments on public traffic network datasets to show that the proposed 

method outperforms state-of-the-art methods. 

 Figure 1. Traffic Congestion in China's Major Cities in 2020. 
 

1.1. Related work 

1.1.1. Travel time prediction based on vehicle trajectory 
In the prediction method based on vehicle trajectory, people install loop detectors at both ends of 

experienced travel time and use the loop detectors to study travel time. When a vehicle passes on the 

road, the loop detectors record the passing time and estimate the vehicle’s speed by calculating the time 

difference, respectively. Jia et al. [13] proposed a PeMS algorithm, which uses the vehicle speed 

obtained by the loop detector to estimate travel time. Asif et al. [14] used vector machines in combination 

with historical data to predict the passing time of roads. Gao et al. [15] combined a support vector 

machine (SVM) with a genetic immune algorithm and used SVM to establish a prediction model. This 

model used the genetic immune algorithm to optimize parameters in order to prevent overfitting. 

Because few roads have loop detectors installed in cities, this method cannot be used to predict the travel 

time of the whole city. Many studies use floating car data. In these studies, GPS trajectory is used to 

predict travel time. However, there are obvious shortcomings in the travel time prediction method based 

on vehicle trajectory data. It does not consider the connection between paths, each intersection, or the 

impact of traffic lights on travel time, so its accuracy is not high. Jenelius et al. [16] used the maximum 

likelihood estimation method to predict the travel time of obtained low sample trajectory data, 

considering the traffic patterns between paths. However, the prediction method based on experienced 

travel time is used to predict the travel time of a single experienced travel time, and the total time is 
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obtained by adding and summing the time of a single experienced travel time. In real life, the traffic at 

the intersection has a certain complexity, which is very important for a path. The prediction method 

based on experienced travel time has a large error. 

1.1.2. Travel time prediction based on experienced travel time and instantaneous travel 

time 
Given the shortcomings of methods based on vehicle trajectory, researchers proposed a travel time 

prediction method based on experienced travel time and instantaneous travel time. Xiao et al. [17] 

explored the differences between travel time estimation based on detector data and automatic vehicle 

identification (AVI) data and compared instantaneous travel time and experienced travel time. The study 

revealed that, compared to uncongested conditions, the difference in instantaneous travel time and 

experienced travel time during congested conditions ranged from 6% to 17%. Zhang et al. [18] proposed 

a simple and efficient travel time prediction method based on probe vehicle data, which matches large-

scale spatiotemporal traffic patterns for predicting instantaneous and experienced travel times. Osman 

et al. [19] compared the performance of two deep learning models (Multi-Layer Perceptron Neural 

Networks (MLP-NN) and Long Short-Term Memory Networks (LSTMN)) in predicting both 

instantaneous and experienced travel times for buses and found that the uncertainty in traffic conditions 

significantly impacts the predictions. The study of Lin et al. [20] focused on travel time prediction for 

signalized corridors, demonstrating that a model combining exponential smoothing, artificial neural 

network (ANN) techniques, and Bayes algorithms effectively captures both instantaneous and 

experienced travel times. These research findings highlight the importance of considering both 

instantaneous and experienced travel times in travel time prediction models, as they are closely related 

to traffic conditions and have strong mutual influences. Therefore, this study takes into account the 

spatiotemporal correlation features of traffic data, the relationships with external influencing factors 

[21], and the impacts of both instantaneous and experienced travel times on the entire modeling process 

when developing travel time prediction models. 

1.1.3. Travel time prediction based on deep learning     
In recent years, with the development of artificial intelligence, deep learning technology has appeared 

in various studies, such as natural language processing, computer vision, and speech recognition. Some 

scholars apply the method of deep learning to travel time prediction [22]. Wang et al. [23] proposed a 

deep learning framework for travel time estimation (DeepTTE), which uses convolutional neural 

networks to obtain the spatial characteristics of historical GPS trajectories and Long Short-Term 

Memory (LSTM) to extract the time characteristics. Qiu et al. [24] proposed a Gated Recurrent Unit 

(GRU) method to predict travel time and use the velocity characteristics to represent the feature 

information of adjacent road segments. Zhang et al. [25] proposed a new assistant monitoring model 

based on deep learning technology. By introducing a double-interval loss function, the time marker 

information in the trajectory data can be fully utilized, and different feature information can be extracted 

automatically and effectively to predict the travel time accurately. Lan et al. [26] proposed an end-to-

end multitask deep neural network model (Deep Image to Time, DeepI2T), which mainly uses trajectory 

data and geomorphic layout images to learn the travel time of a route. This method does not use map 

matching and road network but combines the image layout in the grid with the direction of the vehicle 

to achieve the purpose of the travel time prediction. Zou et al. [27] proposed a travel time prediction 

method based on multimodal integration of large urban data. The method first extracts the eigenvectors 

from the multimodal data as input to the model and then uses the gradient-enhanced decision tree model 

and the deep neural network model to process the low-dimensional and high-dimensional features. 

Finally, it integrates the two models based on the integration method. Traffic signals also have a 

significant impact on travel times [28]. Generally speaking, the change in traffic signal is one of the 

important causes of traffic congestion. When traffic congestion occurs, taxi travel times are extended. 

The more traffic signals a taxi encounters, the longer the trip will take. Tang et al. [29] proposed a tensor-

based spatiotemporal model for citywide travel time estimation using large and sparse GPS trajectories 

received from cabs. By reconstructing the tensor, it is possible to know not only the travel times under 

different traffic conditions but also the probability of occurrence of the corresponding traffic conditions. 
 

2.  METHODOLOGY 

2.1. Problem definition 
This article first cleans the original GPS data, deletes the error points, and then matches the trajectory. 

A trajectory is a collection of consecutive GPS points (each containing longitude, latitude, and 

timestamp): 𝑄 = {𝑞1 , 𝑞2, … , 𝑞𝑛}. Secondly, each trajectory also contains the start time, license number, 

date, whether or not to carry passengers, and so on. We also propose an important attribute: travel 

distance. 𝑑𝑖𝑠(𝑞1, 𝑞2) is used to represent the total distance of a driving trajectory as shown in equation 

(1), where 𝑑𝑖𝑠(𝑞𝑖 , 𝑞𝑖+1) represents the straight line distance between 𝑞𝑖  and 𝑞𝑖+1.: 

𝑑𝑖𝑠(𝑞1, 𝑞𝑛) = ∑ 𝑑𝑖𝑠(𝑞𝑖 , 𝑞𝑖+1).𝑛−1
𝑖=1                             (1) 

According to the above definition, the problem of taxi travel time prediction is described as follows: Set 

T as the traveling trajectory on the travel segment, given P as the query path, and path T is related to 

path P. Our goal is to learn the model parameters using a given historical route training model to estimate 

the travel time of the entire route P. This process can be represented by equation (2), where f represents 

the mapping relationship represented by the model parameters and TravelTime represents the travel time 

of the taxis:  

[𝑇, 𝑃]
𝑓
→ 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒.                                 (2) 
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2.2.  Model design 
As shown in Figure 2, this article proposes a taxi travel time prediction model DeepSTM-TTP based on 

combining a traditional convolutional neural network and a temporal convolution network. The model 

consists of three parts: spatial-temporal convolution mechanism, external factor mechanism, and 

multitask learning mechanism. The model fully considers the spatial-temporal correlation of the original 

GPS position sequence and external information (such as license plate number and date). The external 

factor mechanism is used to process the external information in the trajectory. The spatial-temporal 

convolution mechanism is used to capture the spatial-temporal correlation of trajectories. The output of 

the external factor mechanism and the spatial-temporal convolution mechanism is taken as the input of 

the multitask learning mechanism. Finally, the multitask learning mechanism is used to achieve the 

balance between the local path travel time prediction and the experienced travel time prediction, and the 

final prediction time is obtained. 

 
Figure 2. DeepSTM-TTP framework. Convolutional kernel size is 3*3, TCN convolutional kernel size is 3*3,  

expansion factor is 2𝑛(𝑛 = 0,1,2, … ), number of nodes is 307, and the feature dimension is 1. 
 

2.2.1. External factor mechanism 
Different drivers have different driving habits. The smoothness of roads varies at different time stages. 

Passengers who are in a hurry to travel may urge drivers to speed up. Therefore, it is necessary to 

consider the influence of external factors, such as license plate number, date, cab passenger status, and 

departure time, when predicting the travel time of road vehicles. This article proposes an external factor 

mechanism to fully catch these external factors. Because these external factor values are classified 

values, they cannot be directly input into the neural network. We use the embedding method to convert 

these classification variables 𝑙 ∈ [𝐿] into embedded space RM×1. This way, the input dimension can be 

effectively reduced and the training speed can be improved using the embedding method. Finally, the 

embedded vector is connected with the travel distance 𝑑𝑖𝑠(𝑞1, 𝑞2) as the output 𝑒𝑥𝑡 of the external factor 

mechanism. 

2.2.2. Spatial-temporal convolution mechanism 
The spatial-temporal convolution mechanism is introduced. The model uses the convolution neural 

network layer and temporal convolution network layer to capture the spatial dependence and temporal 

correlation between trajectory data, respectively, in order to achieve accurate prediction and analysis of 

temporal series data. 

The historical data used in this article is a collection of GPS points, 𝑄 = {𝑞1 , 𝑞2, … , 𝑞𝑛}, each 𝑞𝑖  

containing longitude, latitude, and c information. In the research, it is necessary to extract the spatial 

characteristics of the original GPS trajectory data. Previous studies proposed the use of graph embedding 

to extract spatial information of adjacent regions. In the model, we use a nonlinear function combined 

with a convolutional neural network (CNN) to obtain spatial features. In CNN, several different feature 

maps can be obtained by convolution operation through different convolution filters, and neurons in the 

same feature map share weight. The advantage of sharing weights is to reduce the occurrence of 

overfitting and layer-to-layer connections in the network. Compared with other deep network models, 

traditional CNN models are better used in face recognition, target tracking, natural language processing, 

speech recognition, and so on. 

In the model, a nonlinear function is used to map the path location information to the vector 𝑝𝑙𝑜𝑐𝑖 ∈ 16: 

𝑝𝑙𝑜𝑐𝑖 = tanh (𝑊𝑝𝑙𝑜𝑐 < 𝑞𝑖,𝑙𝑎𝑡 , 𝑞𝑖,𝑙𝑜𝑛 >),                       (3) 

Where < > indicates the connection operation of the 𝑖th path, Wploc indicates the learning parameter 

matrix, and tanh is the activation function. The output vector ploci is used as the input of the CNN. The 

traditional CNN model used in this article includes two convolution layers, two pooling layers, and one 

upsampling layer. The convolution layer fully extracts the spatial information features of the path and 



5 

Han S et al.                                                                                                                                                                                       DeepSTM-TTP 
 

 

  
 

Ann Appl Sci.2023;2:712 

then compresses the features through the pooling layer (maximum pooling method is used in the 

experiment) to extract the main features. The combination of the convolution layer and pooling layer 

effectively reduces the complexity of parameters and optimizes the model. Finally, the dimension of the 

feature map is enlarged by using the upper sampling layer to make it have a higher resolution. The output 

of the convolutional network layer is 𝑐𝑜𝑛𝑣2. 

𝑐𝑜𝑛𝑣𝑖
1 = 𝜎(𝑊𝑐𝑜𝑛𝑣

(1)
∙ 𝑝𝑙𝑜𝑐 + 𝑏(1)),                          (4) 

𝑐𝑜𝑛𝑣𝑖
2 = 𝜎 (𝑊𝑐𝑜𝑛𝑣

(2)
∙ 𝑐𝑜𝑛𝑣𝑖

1 + 𝑏(2)),                       (5) 

where 𝑊𝑐𝑜𝑛𝑣  and 𝑏 are two parameters and 𝜎 is an activation function. The final characteristic diagram 

is obtained by convoluting the network layer and recorded as 𝑠𝑝𝑎. 

In order to further deal with the time correlation between the segments, we use the temporal convolution 

network (TCN). The input of the TCN is the characteristic diagram 𝑠𝑝𝑎 and the embedded vector 𝑒𝑥𝑡. 

The update state is shown in the following formula: 

𝑟𝑖 = 𝜎(𝑊𝑠 ∙ 𝑠𝑝𝑎 + 𝑊𝑒 ∙ 𝑒𝑥𝑡 + 𝑊ℎ ∙ 𝑟𝑖−1),                  (6) 

where 𝑊𝑠 , 𝑊𝑒, 𝑊ℎ are the learning parameters used in the TCN layer and 𝜎 is an activation function. 

Finally, the spatial-temporal characteristic sequence {r1，r2，r3，...，r|T|+k+1} is obtained. 

Compared with LSTM and gated loop unit, the TCN has higher accuracy in time prediction of sequence 

model, and its structure is simpler and clearer. 

2.2.3. Multitask learning mechanism 
We take the multitask learning mechanism part as the third part of the model and combine the feature 

sequence with the relevant {r1，r2，r3，...，r|T|+k+1} external factors. Because the instantaneous travel 

time prediction method ignores the influence of intersections and signal lights, it simply sums the travel 

time of each segment. In real life, when we drive, the time for waiting for the red light and crossing the 

intersection account for a part of the total travel time, which has a certain impact on travel time 

prediction. Therefore, ignoring the time of vehicles passing the intersection and waiting for the red light 

makes the results inaccurate. In addition, the problem of data sparsity will occur in the entire segment 

time prediction method [30]. Therefore, in the part of the multitask learning mechanism, we predict the 

travel time of instantaneous travel time and experienced travel time, respectively. In the instantaneous 

travel time prediction, we use two fully connected network layers to map the spatial-temporal feature 

sequence {r1，r2，r3，...，r|T|+k+1} to the temporal sequence {h1，h2，h3，...，h|T|+k+1}, ℎ𝑖 

representing the travel time prediction of the instantaneous travel time 𝑞𝑖 → 𝑞𝑖+1 → ⋯ → 𝑞𝑖+𝑘−1. 

If there are traffic lights, intersections, or other complex situations on a certain road segment, there may 

be traffic jams and other situations on the road segment and the driving time on the road segment may 

increase while the travel time on the road segment with simple situations will be shorter [31]. Therefore, 

we should pay more attention to complex roads. In the part of experienced travel time prediction, we 

add an attention mechanism [32]. The output {r1，r2，r3，...，r|T|+k+1} of the spatial-temporal 

convolution mechanism is taken as the input. Input into the attention mechanism to set different weights 

according to the importance of different paths to the entire path and obtain the vector rext. The attention 

mechanism is essentially a weighted sum operation of the sequence {r1，r2，r3，...，r|T|+k+1}, as shown 

in equations (7), (8), and (9): 

𝑟𝑎𝑡𝑡 = ∑ 𝛼𝑖 ∙ 𝑟𝑖
|𝑇|−𝑘+1
𝑖=1 ,                                            (7) 

𝛼𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
,                                                               (8) 

𝑧𝑖 =< 𝜎𝑒𝑥𝑡(𝑒𝑥𝑡), 𝑟𝑖 >.                                            (9) 

The attention mechanism is widely used, including image processing, speech recognition, natural 

language processing, and other fields. Finally, we input 𝑟𝑒𝑥𝑡into the full connection layer network to 

obtain the travel time ℎ𝑒𝑛 of the experienced travel time. 

This article uses an end-to-end approach to train our model. In order to obtain the optimal training effect, 

in the training phase, we predict the travel time of all instantaneous travel time and the experienced 

travel time at the same time and define two loss functions. The first loss function is defined as the average 

of the relevant loss functions of all instantaneous travel time. 

𝐿𝑙 =
1

|𝑇|−𝑘+1
∑ |

ℎ𝑖−(𝑞𝑖+𝑘−1∙𝑡𝑠−𝑞𝑖∙𝑡𝑠)

𝑞𝑖+𝑘−1∙𝑡𝑠−𝑞𝑖∙𝑡𝑠+𝜔
|

|𝑇|−𝑘+1
𝑖=1 .                (10) 

The second loss function is defined as the relevant loss function of the experienced travel time. 

𝐿𝑒 =
|ℎ𝑒𝑛−(𝑞|𝑡|∙𝑡𝑠−𝑞1∙𝑡𝑠)|

𝑞|𝑡|∙𝑡𝑠−𝑞1∙𝑡𝑠
.                                               (11) 

In the training phase, the loss function is defined as the weighted sum of 𝐿𝑙  and 𝐿𝑒 . The loss is minimized 

through the training model. 𝛼 represents a coefficient to balance the weights of 𝐿𝑙  and 𝐿𝑒 . 

𝑙𝑜𝑠𝑠 = 𝛼 ∙ 𝐿𝑙 + (1 − 𝛼) ∙ 𝐿𝑒 .                                       (12) 

2.3. Datasets and experiment setting 
The data used in the experiment is GPS trajectory data generated by over 14,000 taxis in Chengdu, 

China, in July 2014. The original dataset was collected from GPS devices installed in vehicles operating 

on the road network. These devices typically collect one record at a fixed time interval, forming the GPS 

trajectory data. However, the original data had some issues, such as data noise, outliers, and data 

duplication. To ensure the quality and accuracy of the data, data cleaning was performed in this study. 

Through the data cleaning steps, we obtained a reliable dataset suitable for further analysis and modeling. 

The data cleaning process included the following steps: 
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Trajectory segmentation and deletion: We removed the too-short trajectories. We segmented excessively 

long trajectories, ensuring that the longest trajectory distance in the dataset was 20 kilometers and the 

shortest trajectory distance was 2 kilometers. 

Data resampling: We resampled the trajectory data to ensure that the distance gap between two 

consecutive points was around 200 to 400 meters. 

Outlier detection and duplication removal: We identified and removed outliers by examining the data 

for possible errors or abnormal data points. Additionally, we eliminated duplicate records and duplicate 

data points in the dataset. 

One piece of data contains 11 pieces of field information, forming a driving trajectory. Each trajectory 

includes latitude, longitude, timestamp, date, trajectory start time, license number, passenger status, and 

other information. There are about 500,000 trajectories of data every day. In the experiment, the training 

set uses data from the first 18 days, the evaluation set uses data from the middle five days, and the test 

set uses data from the last five days. The interpretation of each field in trajectory data is shown in Table 

1. 

Table 1. Introduction to Chengdu Dataset. 
 

Subsegment Meaning 

time_gap The time interval between each GPS sampling point and the 

first GPS sampling point in a trajectory path, in seconds 

dist The total length of the trajectory path in kilometers 

Lats, lngs The longitude and latitude information of each GPS sampling 

point in the path 

driverID License plate number information 

dataID, weekID Sampling date 

Status Vehicle passenger carrying status, 0.0 represents the taxi no-

load status, 1.0 represents the taxi passenger carrying status 

timeID Vehicle trajectory start time 

 

The computer configuration used in the experiment is as follows. The CPU we used is Intel (R) Xeon 

(R) CPU E5–2620 v4 @ 2.10GHz,32-core. The GPU we used is NVIDIA Corporation GV100GL [Tesla 

V100 DGXS 32GB] × 8. The total memory of the computer is 128G. The experimental result is the 

average of 20 training processes, and each training process has experienced 150 epochs. The batch size 

is 64. The initial learning rate for training is 0.001. Adam is selected as the gradient optimizer for the 

training process. We chose the commonly used loss function L2 for this experimental training process. 

2.4. Experimental evaluation index 
In the analysis of experimental prediction results, appropriate indicators are needed to evaluate the 

performance of the model. Assuming that the road travel time predicted by the model is �̂�𝑖  and the actual 

road travel time is 𝑦𝑖 , the article uses the following three evaluation indexes to evaluate the prediction 

performance of the model. 

(1) Mean Absolute Error (MAE) is the mean of the deviation between the predicted value and true value, 

which measures the error between the predicted value and true value. The smaller the MAE, the better 

the prediction model. MAE is defined in the following equation: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1 .                                (13) 

(2) Root Mean Square Error (RMSE) is the square root of the ratio of the squared deviation of the 

predicted value to the true value and the number of times predicted, which is used to measure the 

deviation between the predicted value and true value. The smaller the RMSE, the smaller the error 

between the predicted value and the true value. The model is defined in the following equation: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1 .                              (14) 

(3) Mean Absolute Percentage Error (MAPE) is the average of the ratio of the predicted value to the true 

value and the deviation from the true value. It measures the error between predicted value and true value 

and solves the robustness problem in the evaluation index effectively. It is defined as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖−�̂�𝑖 |

|𝑦𝑖 |
𝑛
𝑖=1 .                                    (15) 

(4) The symmetric mean absolute percentage error (SMAPE) is the average of the ratio of predicted 

value to true value and the deviation from the sum of true value and predicted value. It is a correction 

indicator for the problem of MAPE, which can better avoid the problem that MAPE is calculated too big 

because the real value is small. It is defined as follows: 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖−�̂�𝑖 |

(|𝑦𝑖 |+|�̂�𝑖|)/2
𝑛
𝑖=1 .                             (16) 

 

3. RESULTS 

3.1. Benchmarking method 
This article selected four models for comparison with DeepSTM-TTP, including one statistical model 

(HA), one machine learning model (GBDT), and two deep learning models (DeepTTE and DeepTTE-

RNN). The selection of these models is based on the fact that each model represents different methods 
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and techniques with their own advantages and characteristics. The HA serves as a simple benchmark 

model that uses historical average values for prediction. The GBDT has strong generalization and 

learning capabilities, allowing it to automatically learn features and patterns from the data. The 

DeepTTE and DeepTTE-RNN excel in handling complex  sequential data, enabling them to 

automatically extract temporal and spatial features and complex relationships within the data. By 

comparing these models, the performance of each model and its comparison with DeepSTM-TTP in 

travel time prediction tasks can be evaluated, providing insights into result validation and further 

improvements and optimizations. The model is described and designed as follows: 

(1) Prediction model based on historical average data (HA) [33]: We derive historical average speeds 

from historical trajectories, select 2:00 to 4:00 p.m. every Tuesday as the test time, and predict taxi travel 

time based on the start time and historical speed of the vehicle.  

(2) Gradient-Enhanced Decision Tree Model (GBDT) [34]: GBDT is a widely used integrated method 

for road travel time prediction. Since it only handles equal-length sequences, and the original GPS 

sequence we obtained is variable in length. We sampled each sequence into 128 fixed-length sequences 

and used them as input to the model along with other external factors. 

(3) DeepTTE [23]: It is a good prediction model for road travel time prediction. The original GPS 

trajectory information is mapped nonlinearly. And then, CNN and LSTM are used to extract the spatial-

temporal characteristics of each road segment. 

(4) DeepTTE-RNN: It is a modification of DeepTTE with the same input as DeepTTE. We change 

LSTM to RNN to study their performance in extracting time characteristics. 

 

 (a) Comparison of MAE results                    (b) Comparison of RMSE results 

 (c) Comparison of MAPE results                   (d) Comparison of SMAPE results 

 
Figure 3. Comparison of experimental results. The x-axis represents the models, while the y-axis represents the 

values of evaluation indicators. The four indicators are regression indicators, and their values indicate the degree of 

error between the predicted values of the model and the true values. Therefore, smaller values of the four indicators 

indicate better prediction performance of the model. 

 

Experiments have been performed to evaluate the performance of DeepSTM-TTP on real trajectory 

datasets. The system running in this chapter is a Linux system. The programming language is Python 

and the library version is pytorch1.2. In the training phase, this article uses MAE, RMSE, MAPE, and 

SMAPE to evaluate the prediction results. We use the Adam optimization algorithm to train the model 

with five times cross-validation. During the training of the model, we set the learning rate to 0.001, the 

batch size to 64, and the training epoch is 200. The experimental results are shown in Figure 3. When 

using the HA method for prediction, the error is large and the accuracy is relatively low. As a widely 

used integration method, GBDT has a significantly higher prediction accuracy than HA. But its temporal 

dependence is ignored when processing data, resulting in poor experimental results. Based on the 

experimental results, an end-to-end method is used for prediction with high accuracy. DeepTTE and 

DeepTTE-RNN take into account the spatial-temporal correlation of trajectory data and the influence of 

external factors. In the experiment, DeepTTE and DeepTTE-RNN use LSTM and RNN to extract time 
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characteristics, respectively. MAPE is 11.26% and 12.37%, reflecting that LSTM performs better than 

RNN in processing time series data. Finally, our model DeepSTM-TTP performs better than DeepTTE 

with an error of only 10.58%. A large number of simulation experiments have been carried out to further 

study the impact of each part of the model on the prediction results. We performed ablation experiments 

on the trained deep learning model, DeepSTM-TTP, by removing certain external factors from the input. 

This allows us to determine which attributes impact the experimental results most and how their 

contributions affect the final outcome. Ablation experiments can help us better understand how different 

external attributes affect the final outcome. We used weather and velocity attributes as the control group 

and performed multiple experiments using weather-only, velocity-only, and weather and velocity 

attributes as the experimental groups while recording the results. In the external factor mechanism 

section, to better capture the feature information of adjacent roads, we added the velocity variable to 

assist in extracting the feature information of nearby roads [35] and studied the impact of weather and 

velocity characteristics on time prediction, respectively, as shown in Figure 4. In the DeepSTM-TTP 

model, errors decrease by 0.56% and 1.32% by adding weather and velocity attributes. When both 

attributes are added at the same time, the error is reduced by 1.79%, showing the validity of both 

attributes. This aligns with the reality that in rainy or foggy weather, drivers slow down and travel times 

are relatively longer. And when adjacent segments encounter traffic congestion or traffic accidents, the 

adjacent segments will certainly be affected. Therefore, when the characteristic information of adjacent 

road segments is added through velocity features, the spatial characteristics of adjacent road segments 

are incorporated into the time prediction of the current path, which greatly improves the prediction 

accuracy. 

 
Figure 4. Changes in MAPE Indicators when adding weather and velocity attributes. 

 

 
Figure 5. Changes of MAPE Indicators with distance. 

 

In addition, we studied the relationship between trajectory path length and prediction accuracy, as shown 

in Figure 5, and compared DeepTTE and DeepTTE-RNN with our model. As the length of the path 

increases, the feature information obtained during prediction increases and learning ability increases, so 
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the MAPE of the model decreases. DeepSTM-TTP has no obvious advantage over other models when 

the path length of the process is short. When the path length of the process is longer than 20 kilometers, 

the prediction error is low, which reflects the better prediction performance of our model in medium-

long distance paths. 

 

4. CONCLUSIONS  
In this article, we first introduce the prediction of taxi travel time on urban roads. According to the 

actual situation of passengers taking taxis, the predicted time includes the waiting time and travel time. 

Through cleaning the acquired taxi GPS point data, the wrong points are deleted. And the trajectory is 

processed from no load to full load according to the taxi passenger carrying status. This article proposes 

the DeepSTM-TTP model to deal with the temporal correlation, spatial dependence, and other external 

attributes between paths. In the model, firstly, nonlinear functions are used to map the trajectory path 

to the grid, and the spatial features in the path are extracted through CNN. Then, TCN is used to extract 

the time features between the paths. In the prediction phase, we input the spatial-temporal feature 

sequence obtained into the stacked fully connected network and predict the travel time by combining 

the instantaneous travel time with the experienced travel time. Finally, a large number of simulation 

experiments are carried out. Through the analysis of the experimental results, it is verified that our 

spatial-temporal model has excellent prediction performance when dealing with the problem of time 

prediction. However, our work has some limitations. Firstly, many factors affect taxi travel time, such 

as the number of traffic lights on the driving route, the number of turns, the congestion coefficient of 

the road, and the weather. Our work only considers the license plate number, date, passenger status of 

the taxi, and departure time of the trip. Secondly, further improvement is needed in the feature 

extraction methods for external factors to enhance the accuracy of the model. Based on the above 

limitations, we can improve prediction accuracy through the following methods. First, we can collect 

and process more external factor data in the external factor mechanism. Second, for more external 

factors, we can use an additional convolution module to perform preliminary feature extraction and 

then combine the subsequent attention mechanism to fully model the external factors. Third, more 

convolution layers will improve the prediction accuracy but will bring the problem of gradient 

disappearance or gradient explosion. We can stack basic spatial-temporal convolution modules in a 

residual linking to improve the final prediction accuracy. 
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