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ABSTRACT 

Accurate and timely traffic flow prediction plays a vital role in traffic planning. But the 

work is more complicated for the road where the traffic accident occurred and the roads 

around it. This is because the influence of traffic accidents not only acts on the traffic flow 

of the current road but also quickly spreads to the surrounding road. Traffic accidents differ 

from other external factors, and their influence on surrounding traffic flow is distinct. 

Therefore, this work proposes an influence coefficient matrix to express the degree of 

influence between any two roads to quickly capture the impact of traffic accidents on 

different road traffic flows. Moreover, this work proposes a hybrid network model based 

on graph and temporal convolution. To address the spatial dependence between traffic flow 

data and roads, we selected a graph convolutional network that can be used to analyze the 

complicated non-Euclidean spatial data in order to extract the spatial dependence. Taking 

into consideration the temporal dependence of traffic flow data, the temporal convolution 

model is chosen in this work to model the temporal dependence of the data. Compared to 

traditional statistical models, single deep learning models, and complex spatiotemporal 

convolutional models, our model’s performance has been improved by 30% to 50%. 
 

KEYWORDS: Traffic Planning, Traffic Flow Prediction, Graph Convolution Network, Time 

Convolution Network, Traffic Accident Influence Coefficient Matrix, The Spatial-Temporal 

Correlation. 
 

 

1. INTRODUCTION 
With the widespread application of Intelligent Transportation Systems (ITS), processing traffic 

prediction through intelligent computing has received more and more attention. Among them, 

accurate and timely traffic flow prediction has become one of the most vital challenges in ITS. Based 

on the predicted traffic flow, relevant departments can better develop relevant traffic planning 

strategies to reduce urban congestion, improve traffic efficiency, and decrease the number of public 

accidents. Meanwhile, travelers can choose the appropriate travel route based on current traffic 

conditions, thereby reducing time costs and financial losses [1]. 

However, since traffic flow prediction is a typical spatiotemporal process, the key problem to 

achieving traffic flow prediction is how to extract the time dependence and spatial correlation [2]. 

Most current methods for predicting traffic flow are based on graph architecture and sequence learning 

models, which have been able to extract spatiotemporal information better. However, when predicting 

traffic flow, we found two problems: first, when a traffic accident occurs in a certain area, the 

influence generated by that accident will quickly spread to its surrounding areas, causing congestion 

phenomenon and thus affecting the traffic flow in the surrounding areas [3]. Similarly, the state of the 

area where a traffic accident occurs at that moment also affects the state of traffic at subsequent 

moments. That is, traffic accidents can have a spatial and temporal influence on traffic flow. This 

work uses a graph structure to describe the spatial structure of traffic flow, where nodes denote roads 

in the region and edges denote the connectivity between two roads. As shown in Fig. 1(a), the yellow 

line indicates the influence on the surrounding area and the green line indicates the influence on future 

moments when a traffic accident occurs. That is, a traffic accident affects the traffic flow in the 

adjacent area and the following period. Therefore, it is important to fully analyze the influence 

relationship between different regions to increase traffic flow prediction accuracy [4]. Second, traffic 

accidents differ from other external factors (e.g., weather and holidays). Other external factors affect 
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each road in a region to the same extent; i.e., they are consistent. However, traffic accidents affect 

each road differently. The degree of influence between the two areas depends not only on the distance 

and connectivity but also on the traffic patterns of the two areas. Regions with similar traffic patterns 

have similar spatiotemporal correlations. As shown in Fig. 1(b), the traffic modes of both Road 1 and 

Road 2 are car lanes, while that of Road 3 is bicycle lanes. Therefore, the trend of traffic flow changes 

on Road 1 and Road 2 is similar, but there is a difference between the trend of traffic flow changes on 

Road 3. Therefore, modeling the relationship between traffic patterns and the degree of interaction 

between the two areas is crucial in traffic flow forecasting [5]. 

 

 
(a)

 
Composition of spatiotemporal correlation 

 

 (b) The influence of traffic patterns on traffic flow 
 

Fig. 1. The complexity of traffic accident influence on traffic flow. 

 

Based on the above research, it can be concluded that when both roads belong to car lanes, the trend 

of traffic flow changes is highly similar. If a traffic accident occurs on one road during peak commuting 

hours, based on the principle that drivers usually choose the same traffic mode, the traffic flow on the 

other road will be significantly affected, and it is prone to a sudden increase or even blockage of traffic 

flow. However, for Road 3, with a bicycle lane and a similar distance, the impact of traffic flow is 

relatively small. Therefore, this work constructs an influence coefficient matrix according to the 

changing trend of traffic flow between different regions and the distance between regions, which is 

used to express the degree of influence of traffic accidents between any two regions. Meanwhile, this 

work proposes a hybrid deep learning framework, namely, a hybrid network model based on graph and 

temporal convolution (GTCN). This model could thoroughly analyze and predict the spatiotemporal 

feature of the traffic flow. A convolutional map network is employed to extract the spatial correlation 

among different regions, and a temporal convolutional network is employed to obtain the temporal 

correlation of the traffic flow. This work was tested using real datasets, and the results of the 

experiments show that this model outperforms other current models in predicting traffic flow. 

This work proposes a model GDCN for predicting traffic flow, which is used to capture the 

spatiotemporal correlation of traffic flow data. To address the varying degrees of impact of traffic 

accidents among different regions, this work proposes a coefficient matrix to represent the degree of 

impact of traffic accidents in different regions. This work contributed to the following:  

(1) This work considers the influence of traffic accidents in one area on the traffic flow in other areas, 

that is, the capture of the diffusion effect between nodes. This work proposes constructing the influence 

coefficient matrix according to the changing traffic flow and distance trend in different regions. The 

coefficient matrix represents the degree of influence of traffic accidents in each region. 

(2) This work introduces a hybrid model that fuses convolutional graph and temporal convolutional 

networks (GTCN). The graphical convolution layer realizes the extraction of spatial correlation for the 

traffic flow data, and the temporal convolution layer realizes the extraction of temporal dependence 

for the traffic flow data. Thus, the data’s spatial and temporal correlation can be fully analyzed and 

extracted, and prediction accuracy is improved. 

(3) This work uses real datasets for experimental evaluation. The results show that the hybrid model 

composed of the graph convolution and the temporal convolution models has a relatively high accuracy 

in predicting traffic flow. In the meantime, the fusion of the influence coefficient matrix and traffic 

flow data as inputs to the model is more conducive to capturing traffic accident influence on traffic 

flow. Compared with existing models for the prediction of traffic flow, this work proposes a model 
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with higher prediction accuracy; RMSE, MAE, and MAPE decreased to 18.72, 12.23, and 0.2, 

respectively. 

The rest of this article is arranged as follows: In Section 2, relevant work is reviewed. In Section 3, the 

relevant data design and model design were mainly introduced. In Section 4, we mainly introduce 

experiments and result analysis based on real datasets. The experiment is summarized in Section 5. 

 

2. RELATED WORK 
The traffic flow prediction problem has been a widespread concern. Current traffic flow prediction 

faces two main challenges: extracting the spatiotemporal correlation of traffic flow data and capturing 

the influence of traffic accidents on traffic flow. Many works presented in the literature have explored 

how to improve prediction accuracy. 

2.1. Traffic flow prediction 
Examples of traditional statistical methods include the historical average (HA) [6] and autoregressive 

integrated moving average (ARIMA). The HA model is the result of taking the average of historical 

data as the prediction. The ARIMA model predicts future traffic flows by analyzing the correlation 

between historical and current data. These methods have the characteristics of simple and fast 

calculation and strong interpretability. However, statistical methods cannot process complex and 

nonlinear traffic flow data [7].  

Machine learning methods solve such problems very well. Traditional machine learning models can 

handle more complex data. Common models are the K-nearest neighbor algorithm (KNN) [8], support 

vector machine (SVM) [9], and decision tree (DT) [10]. However, traditional machine learning models 

rely on feature engineering and expert experience, so their prediction accuracy could be higher for 

highly nonlinear data. 

With the maturity of data acquisition technology and the continuous improvement of computing power, 

deep learning methods have been gradually applied to traffic forecasting. Huang et al. proposed using 

a deep belief learning network (DBN) [11]. The network is a special deep neural network formed by 

stacking Boltzmann machines to learn the features of traffic flow data fully. However, such a dense 

network makes extracting spatial and temporal features from the input data difficult. The performance 

of this class of models is greatly degraded under conditions that strictly limit or even completely ignore 

spatial correlations. To be able to solve this problem, recurrent neural network (RNN) [12], long short-

term memory network (LSTM) [13], and gated recurrent unit (GRU) [14] models began to be applied 

to traffic prediction. Among them, RNN captures the temporal dependency of traffic flow data by 

setting a self-circulation mechanism. LSTM adds a gating unit based on RNN so that the storage unit 

can continuously store the updated data, solving the long-term dependence problem. GRU is a variant 

of the LSTM model. Compared with the LSTM model, the structure is simpler and the parameters are 

fewer. Convolutional neural network (CNN) is a typical feedforward propagation deep learning 

network, which has achieved significant achievements in the field of image analysis [15]. Therefore, 

Zhang et al. [16] proposed treating urban traffic flow as pixel values and historical traffic flow data as 

a set of images and using CNN to predict traffic flow images at the next timestamp. In this way, the 

extraction of spatial correlation of data is realized. However, using traditional CNNs to process 

topological graph data usually requires traversing all possible sequences of node appearances in the 

graph as input to the model, which leads to problems such as extensive computation and slow training 

speed [17]. The birth of a graph convolution network (GCN) is a good solution to such problems. GCN 

can aggregate the features of nodes near a node and learn the features of nodes through weighted 

aggregation to perform a series of prediction tasks [18]. GCNs have shown better performance in 

various traffic applications. Zhu et al. [19] used GCN to extract positional features through positional 

attributes; Peng et al. [20] proposed to construct a new correlation dynamic graph based on historical 

traffic flow and use a model integrated with GCN and LSTM to mine the spatiotemporal correlation 

of the data. Li et al. [21] captured the spatiotemporal correlation of data by incorporating an adaptive 

learning matrix into GCN. 

As traffic data’s spatial and temporal correlations can be better captured, researchers have begun to 

fuse the two for traffic safety prediction. Yu et al. [22] proposed a spatiotemporal graph convolutional 

network (STGCN) that effectively captures comprehensive spatiotemporal correlations by modeling 

multiscale traffic networks. Similarly, the spatiotemporal attention-based graph convolutional network 

(ASTGCN) was proposed by Guo et al. [23]. The model captures the spatial correlation among 

different locations through spatial attention and the temporal correlation among different times through 

temporal attention. The model performs better in traffic prediction and improves the accuracy of traffic 

safety assessment. Wang et al. [37] proposed a traffic gate graph neural network (traffic-GGCN) for 

the real-time fusion of spatiotemporal representation modeling and applied GGRU-based modules to 

explore and aggregate spatial interactions to extract temporal correlations through real-time fusion.  
A more detailed discussion about these actuators, their mathematical modeling, and incorporation into 

the governing equations of motion of the rotating flexible structure is not part of the scope of this work. 

For this work, the idea that adding piezoelectric actuators acting along the flexible structure adds 

external forces on the right side of Eq. (6) is sufficient. 

Equation (5) can also be written as follows [7, 22]: 

( ) 2 2

piezo

EI
r x sinαθ cosαs νsin αθ ρAgcosα q (x,t),

ρA

iv + + + − + + =

                                                   

(6) 

where qpiezo(x, t)in Eq. (6) is the force applied by the piezoelectric actuator to the beam. The external 

force qpiezo(x, t) is also the control force to be applied along the flexible structure. 
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2.2. Capturing the influence of traffic accidents 
None of the models above consider the influence on local traffic congestion from traffic accidents, i.e., 

capturing the diffuse influence between regions. In the last few years, several disciplines have studied 

the influence of traffic accidents extensively. These studies are mostly based on theoretical modeling 

and simulation and can be divided into three categories: deterministic queuing theory or shock wave 

theory [24], heuristics and simulations [25], and microscopic modeling of driver behavior [26]. 

However, the results of such models rely on theoretical simulations of road network traffic rather than 

on actual collected traffic data. Therefore, to solve this type of problem, most current literature treats 

traffic accidents as external factors. They are fused with traffic flow data through learnable parameters 

and used as inputs to the model for prediction. For example, Yu et al. [13] proposed using traffic 

incidents as disruption signals. They used a stacked autoencoder to extract potential features. Historical 

traffic flows are input to a deep neural model composed of LSTM-based units for time-dependent 

modeling. The final combination of the two completes predicting traffic flow in abnormal situations 

(traffic accidents). However, traffic accidents have varying degrees of influence on the road where the 

accident occurred and other roads; i.e., the influence of traffic accidents is inconsistent. Therefore, the 

combination of traffic accidents with spatial information is beginning to emerge to further capture the 

influence generated by traffic accidents. For example, Liu et al. [3] proposed to detect anomalies 

(traffic accidents) in complex traffic environments by using location coding. In that article, it was 

pointed out that traffic accidents greatly influence traffic congestion in their area, so centralized 

processing can improve prediction performance. The quantitative features of traffic accidents can be 

extracted, and the potential of traffic congestion can be represented using location coding. Fukuda et 

al. [27] proposed adding traffic accident features to the input data and constructing features of whether 

a traffic accident occurred as features for locating sensors while using a model constructed based on 

graphical convolutional networks to predict the traffic flow under the influence of accidents. Liu et al. 

[28] redefined the information on traffic accidents and combined it with traffic flow data to capture the 

impact of traffic accidents on traffic flow while solving the problem of traffic accidents having a 

smaller scale than traffic flow data. Moreover, Pan et al. [29] proposed quantifying the spread of traffic 

accident influences, i.e., providing the spatial (affected area) and temporal (traffic flow reduction) 

aspects as the final prediction results. Inspired by this study, this study proposes constructing a matrix 

of influence coefficients to describe the degree of mutual influence between any two regions to quantify 

the spread of traffic accident influence. Meanwhile, this work proposes a hybrid model that integrates 

a graphical convolutional network and a temporal convolutional network. This also achieves the 

extraction of the spatiotemporal correlation of traffic flow data. GCNs have shown better performance 

in various traffic applications.  

 

3. DATA DESIGN 

3.1 Problem definition 
As typical spatiotemporal data, the traffic flow data are correlated in temporal and spatial dimensions. 

Therefore, when predicting traffic flow, traffic flow data of historical temporal and traffic flow data of 

its adjacent road nodes should be considered. In short, the traffic flow prediction problem is a time 

series prediction problem considering spatial characteristics. Traffic flow is used as a predictor to 

predict the future traffic flow using the traffic flow at historical time. That is, the traffic flow in the 

first d periods of n nodes [𝑋𝑡−𝑑 , . . . , 𝑋𝑡−2, 𝑋𝑡−1] is used to predict the traffic flow in the future q periods, 

as shown in equation (1): 

(𝑌𝑡−𝑞−1, … , 𝑌𝑡−1, 𝑌𝑡) = 𝑀((… . . . , 𝑋𝑡−2, 𝑋𝑡−1), 𝐺), (1) 

where 𝑋𝑡 = (𝑥𝑡
1, … , . . . , 𝑥𝑡

𝑛) ∈ 𝑅𝑛 and 𝑥𝑡
𝑛 represent the traffic flow of the n-th node at time t. Likewise, 

𝑌𝑡 = (𝑦𝑡
1, … , . . . , 𝑦𝑡

𝑛) ∈ 𝑅𝑛, yt
n represents the traffic flow at the n-th node for time t. M represents the 

modeling method. 

 

 

 

Fig. 2. d input channels obtain the traffic flow at time p through the mapping function M. 

 

As shown in Fig. 2, in this work, the graph structure G is used to represent the traffic graph. 𝐺 =
（𝑉，𝐸）is a nonweighted matrix representing the spatial dependencies between traffic roads. Among 
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them, node V of the graph represents the collection of roads. 𝑉𝑖 represents the i-th road and 𝑉 =
{… , 𝑣2, . . . , 𝑣𝑛}. Edge E represents the set of intersections, reflecting the connections between roads. 

This work uses an adjacency matrix A to store the connections between traffic roads. The definition of 

A is shown in (2): 

𝐴𝑖𝑗 = {
1，𝑒𝑖𝑗 ∈ 𝐸

0，𝑒𝑖𝑗 ∉ 𝐸
,    (2) 

where 𝑒𝑖𝑗  represents the connection between 𝑣𝑖 and 𝑣𝑗. If 𝑒𝑖𝑗=1, there is a connection between 𝑣𝑖 and 

𝑣𝑗. If 𝑒𝑖𝑗=0, there is no connection between 𝑣𝑖 and 𝑣𝑗. 

This work constructs a matrix 𝐵 ∈ 𝑅𝑇×𝑛 based on the traffic accident dataset to represent the 

occurrence of traffic accidents on roads, where T denotes the historical time duration and n is the 

number of road nodes. 𝑏𝑖
𝑡 represents whether a traffic accident occurred on road i at time t. 𝑏𝑖

𝑡= 0 means 

no traffic accident occurred on road i at time t; 𝑏𝑖
𝑡= 1 means a traffic accident occurred on road i at 

time t. Based on this, a dimensional 01 matrix is constituted. 

3.2 Model design 
The model structure proposed in this article is shown in Fig. 3, which mainly consists of the temporal 

convolution layer and the spatial convolution layer. Among them, the temporal convolution layer 

adopts a temporal convolution network to extract the temporal correlation of data. In contrast, the 

spatial convolution layer uses a graph convolution network to extract the spatial correlation of data. 

The proposed traffic accident impact coefficient matrix is embedded in the input layer and traffic flow 

is the final input of the model. This section mainly provides a detailed introduction to the impact 

coefficient matrix and model. 

 

 
 

Fig. 3. The structure of the model. 

 

3.2.1 Traffic accident influence coefficient matrix 
For traffic flow prediction, not only the spatiotemporal correlation of data but also the influence of 

traffic accidents on traffic flow should be considered. Traffic accidents are different from other external 

factors, such as weather, which have the same impact on any road. However, the impact of traffic 

accidents on different roads varies depending on their time and space. In addition, the degree of 

influence between roads is related not only to distance and connectivity but also to the relationship 

between traffic modes. The impact between roads with the same traffic mode will be greater. This is 

mainly because roads in the same traffic mode often have similar behavioral characteristics and 

patterns, so their interaction may be more prominent. As shown in Fig. 4, when a traffic accident occurs 

on a road, traffic participants are more likely to choose a road with the same traffic mode as an 

alternative path, resulting in an increase in traffic flow on the road and a smaller change in traffic flow 

on the road. Based on the above reasons, this work proposes constructing a traffic accident influence 

coefficient matrix to capture the influence diffusion between nodes. 

 
 

Fig. 4. The influence of traffic patterns on traffic flow. 
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The calculation process of the influence coefficient matrix will be described in detail below. Since the 

changing trend of traffic flow can well reflect the traffic pattern in the area, this work uses the traffic 

flow of the road as a measure of the similarity of the traffic patterns of any two roads. Likewise, the 

degree of influence between roads is also influenced by distance. When the distance between the two 

roads is shorter, the degree of influence is more significant. Conversely, the influence is reduced when 

the two roads are farther apart.  

Therefore, this work uses the Pearson correlation coefficient to calculate the similarity of traffic 

patterns between two roads and then divides it by the distance between the two, making it positively 

correlated with the similarity of traffic patterns and negatively correlated with distance. Based on this, 

the impact coefficient of traffic accidents, i.e., the degree of impact between two points, is obtained. 

The specific calculation formula is as follows: 

𝑐𝑜𝑟 =
𝑝𝑖𝑗

𝑑𝑖𝑗
,                             (3) 

where 𝑝𝑖𝑗  is the similarity degree of traffic patterns between node i and node j and the specific 

calculation is (4); 𝑑𝑖𝑗  is the distance between node i and node j; 𝑥𝑖 represents the traffic flow data of 

node i. 

𝑝𝑖𝑗 =
𝑍 ∑ 𝑥𝑖𝑥𝑗−∑ 𝑥𝑖 ∑ 𝑥𝑗

√𝑧 ∑(𝑥𝑖)2−(∑ 𝑥𝑖)2√𝑧 ∑(𝑥𝑗)2−(∑ 𝑥𝑗)2
,                (4) 

The B matrix (01 matrix) constructed in Section 3.1 is multiplied by the traffic accident influence 

coefficient matrix to obtain the degree of influence of each road node by the accident at each moment. 

This matrix is denoted as C∈ 𝑅𝑇×𝑛. Specifically, it is shown in Fig. 5, where 𝑐𝑣2

𝑡2 =1 indicates that the 

road has a traffic accident at the moment and 𝑐𝑣2

𝑡2 =0.7 is denoted that the road is affected by a road 

traffic accident to the extent of 0.7 at the moment. 

 
Fig. 5. Schematic diagram of the 01 matrix multiplied by the influence coefficient matrix. 

 

3.2.2 Spatial dependency modeling 

Traffic flow changes as the traffic road topology shifts. Commonly used CNN modeling methods can 

extract the spatiotemporal features of data. However, they are only applicable to Euclidean data 

structures and cannot be used to capture the spatiotemporal correlation of complex data. Graph 

convolutional networks make up for this shortcoming. The model can handle non-Euclidean data well 

and has achieved good results in image classification and document analysis [30-31]. Because of the 

complex spatiotemporal correlation of traffic flow data, this work uses a graph convolution model to 

capture the spatial correlation of traffic flows. The GCN model structure is shown in Fig. 6.  

 
Fig. 6. GCN model structure diagram. 

 

Because the calculation of graph convolution in the Fourier domain is relatively simple, GCN operates 

by Fourier transforming the graph data into the spectral domain. The operator of the Lie transform 

becomes the feature vector corresponding to the graph, which is also the core idea of applying the 

Fourier transform to the graph [32-33]. The definition of the Laplace matrix is shown in (5). To prevent 

the functions of the model from degrading during the training process due to different scales, the 

eigenvalues of the Laplacian matrix are normalized in this work to obtain the normalized Laplacian 

matrix. Its calculation formula is shown in (6): 

𝐿 = 𝐷 − 𝐴,                              (5) 

𝐿𝑠𝑦𝑠 = 𝐷−
1

2𝐿𝐷−
1

2,                     (6) 
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where L represents the Laplacian matrix, A is the adjacency matrix of the graph, and D is the degree 

matrix of the node. 

Some follow-up work has been done by reducing the computational complexity from O(n2) to linear, 

including using Chebyshev polynomials to approximate the convolution kernel and by stacking 

multiple local graph convolution layers with first-order approximations of Laplacian graphs. Among 

them, the Chebyshev polynomial greatly reduces the computational cost by avoiding the eigenvalue 

decomposition required to find the Fourier basis. The relevant calculation is shown in (7), where 𝛽𝑘 

represents the Chebyshev polynomial coefficient, the specific calculation process of 𝐿𝑠𝑦𝑠̃  is (7), I 

represents the identity matrix, and 𝜆𝑚𝑎𝑥 represents the largest eigenvalue of the Laplace matrix. The 

specific process of 𝑇𝑘(𝐿𝑠𝑦𝑠̃ ) is (8). Based on (6), the parameters of the convolution kernel are reduced 

to k, with k being a constant. Equation (9) shows the recursive definition of the Chebyshev polynomial 

[34]: 

𝑔𝜃(𝐿𝑠𝑦𝑠 ) = ∑ 𝛽𝑘𝑇𝑘(𝐿𝑠𝑦𝑠̃ )𝑘
𝑘=1 , (7)  

 𝐿𝑠𝑦𝑠̃ =
2

𝜆𝑚𝑎𝑥
𝐿𝑠𝑦𝑠 − 𝐼,                  (8) 

 

{

𝑇0(𝐿𝑠𝑦𝑠̃ ) = 1

𝑇1(𝐿𝑠𝑦𝑠̃ ) = 𝐿𝑠𝑦𝑠̃

𝑇𝑘(𝐿𝑠𝑦𝑠̃ ) = 2𝐿𝑠𝑦𝑠̃ ∙ 𝑇𝑘−1(𝐿𝑠𝑦𝑠̃ ) − 𝑇𝑘−2(𝐿𝑠𝑦𝑠 )̃

.   (9) 

 

Although traffic accidents can affect traffic flow significantly, due to the small number of traffic 

accident samples, it is very easy to treat the phenomenon of a sudden drop in traffic flow due to traffic 

accidents as abnormal data during the training process. Therefore, this work adds the matrix C 

mentioned in Section 3.2.1 to the traffic flow data, which can be applied to increase the importance of 

such data and to better catch the influence of traffic accidents on traffic flow. The influence of traffic 

accidents on traffic flow is better captured. After this operation, the input data are expanded to four 

dimensions. The data are then dimensionally transformed and taken as new inputs into the model. 

Over time, traffic flow at a historical time can have different effects on future traffic flow. In short, 

traffic flow data has an obvious time correlation: time series data. One of the most desirable properties 

of a predictive model is that the output value depends on all the input data. This can be achieved by 

continuously deepening the network as the input sequence length grows. But this also causes the 

problem that the model has many parameters and takes longer to train. Moreover, the problem of the 

gradient disappearing as the number of model layers increases is easy to occur. For the above reasons, 

this work adopts a temporal convolutional network (TCN) to extract temporal features [35]. 

TCN can extract temporal features of traffic flow across time steps. Therefore, this work uses TCN as 

the temporal data correlation capture model. TCN has three main modules: causal convolution, dilated 

convolution, and residual modules. 

Causal convolution refers to the convolution operation that considers only the first half; i.e., only the 

inputs before the prediction time step are convolved. Since all the data in causal convolution strictly 

obey temporal causality, the value of time t for each layer of the model in this experiment depends 

only on the information before time t (i.e., [0, t]) and is therefore adapted to handle time series data. 

The expression of the formula is shown in (10):  

𝑌𝑡 = ∑ 𝑓𝑖 ∙ 𝑋𝑡−𝑘+1
𝑘
𝑘=1 .                          (10) 

 

Dilated convolution permits the input data to be sampled in intervals according to the sample rate 

during the convolution process, and the sampling rate is controlled by a dilation factor d, as shown in 

Fig. 7.  

 
Fig. 7. Diagram of dilated convolution. 

 

Generally speaking, the higher the sampling rate of the layer, the larger the value. That is, the dilation 

convolution enables the valid window size to grow exponentially as the number of layers increases, 

thus obtaining a larger field of sensation with fewer layers. The calculation formula is shown in (11): 

𝑌𝑡 = ∑ 𝑓𝑖 ∙ 𝑋𝑡−𝑖∙𝑑 .𝑘
𝑖=0                           (11) 

The deepening of the network makes the training process very complicated. This problem can be well 

solved by using residual structures instead of traditional structures, as shown in Fig. 8.  
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Fig. 8. Residual module structure diagram. 

 

Let X be the input value of the residual module, the identity mapping function across layers is 𝐹(∙), 

and the result will add the input value X. Hence, the calculation formula of the output value of the 

residual module is as follows: 

𝑜 = Tanh(𝑋 + F(𝑋)).                     （12） 
 

4. EXPERIMENT 

4.1 Dataset introduction 

This work uses a real dataset from California, USA, with a longitude range of [37.928, 38.0124] and a 

dimension range of [-121.941, -121.750]. The work selects 19 roads as the most trained nodes—55% 

of the dataset as the training set and 45% as the testing set are used. Data on traffic flow from May 31 

until June 30, 2021 (30 days in total), were chosen as the training set, and the sampled raw data were 

collected at five-minute intervals. That is, a sensor collects 288 pieces of data daily, totaling 8640 five-

minute periods. To verify the performance of the model, the test set uses 25 days of traffic flow data 

from June 1 to June 25, 2021. The testing set data consisted of 7200 five-minute time slots. This work 

mainly uses linear interpolation to fill in missing values and standardize the data. To verify the stability 

and robustness of the GTCN model, this work selects all 29 roads in the dataset and abstracts them as 

nodes, constructing a topological structure diagram based on longitude and latitude. GTCN achieved 

good results on both data, verifying the effectiveness and stability of the model. 

4.2 Experimental setup 

All experiments were conducted and tested on Windows 10(CPU: Intel(R) W-2133 CPU@3.60GHz; 

GPU: NVIDIA GeForce RTX 2080 Ti). The input data used in this work is 12 five-minute periods, 

and the output data is 3 five-minute periods. That is, the traffic flow in the next 15 minutes is predicted 

based on the data of the past 1 hour. In the spatial convolution layer, the convolution kernel is 

approximated using Chebyshev’s first-order polynomial to reduce the difficulty of model training. In 

the temporal convolutional layer, the initial dilation rate of TCN is set to 2, and the convolution kernel 

is set the same for 3 and 5 layers of TCN. In the training part of the model, the experiment batch size 

is set to 32 and the learning rate is set to 0.001. The optimizer uses Adam to train the model and the 

number of iterations is set to 1000. The training algorithm employed in this experiment is depicted in 

Algorithm 1. 

 

Algorithm 1: Model Training 

N=19（The number of node）,S=12（The number of input） 

Input: Initialize Adjacency Matrix A ∈ 𝑅𝑁×𝑁, Influence Coefficient Matrix 

𝑐𝑜𝑟 ∈ 𝑅𝑁×𝑁, 01 Matrix 𝐵 ∈ 𝑅𝑇×𝑁 

1: for v<N do 

2:      𝑝𝑣 ← [𝑝𝑣1, 𝑝𝑣2, … 𝑝𝑣𝑁] 
3:     𝐷𝑣 ← [𝑑𝑣1, 𝑑𝑣2, … 𝑑𝑣𝑁] 

4:     𝐶𝑜𝑟𝑣 ← [
𝑝𝑣1

𝑑𝑣1
,

𝑝𝑣1

𝑑𝑣1
, … ,

𝑝𝑣1

𝑑𝑣1
] 

5:      v ← v + 1 

6: end for 

7: C← B ∙ Cor 

8: Construct the model as shown in Fig. 2 

9: repeat 

10:      Input a batch of data into the network 

11:      𝑋𝑡
′ ← 𝑇𝐶𝑁(𝑋𝑡 , 𝐶𝑡) 

12:      𝑋𝑡
′′ ← 𝐺𝐶𝑁(𝑋𝑡

′, 𝐴) 

13:      𝑌𝑝𝑟𝑒𝑑 ← 𝐹𝐶𝑁(𝐵𝑎𝑡𝑐ℎ 𝑁𝑜𝑟𝑚2𝐷(𝑇𝐶𝑁(𝑋𝑡
′′))) 

14:      Update network parameters and use Adam algorithm to minimize 

L2 loss between 𝑦𝑝𝑟𝑒𝑑and y 

15:       Until Reached the designated number of rounds 

16:       Return to training model 



Ann Appl Sci.2023:715  9 

 Liu X. et al.                                                                                                                              Time Flow Prediction: A Saptiotemporal Convolution Model 

  

  
 

4.3 Baselines 

To prove the performance of the model, this work selects the following seven baselines for comparison. 

The specific introduction of the model is as follows: 

1) HA: This model is a traditional statistical model, which is an averaging of flows over the same 

period in the historical data, and uses the calculated result as the predicted value. 

2) ARIMA: The model predicts traffic flow by analyzing the relationship between historical traffic 

flow data and current flow data.  

3) GCN: The model is a graph convolution network (GNN) using convolution operations, which can 

catch the spatial correlation of traffic flow data well. The main goal of GCN is to extract the spatial 

features of topological graphs. This work sets a layer of GCN for prediction, with input and output 

channels set to 1 and 16, and convolutional kernel size set to 1×3. GCN updates the learnable parameter 

matrix W. 

4) LSTM: The model handles the transfer state of the data by a gating mechanism that comprises an 

input gate, an output gate, and a forget gate. 

5) STGCN: The model consists of GCN and TCN, which can not only extract the spatial features of 

traffic flow data but also capture the most basic temporal features consistently. This work uses two 

spatiotemporal convolution modules, with 64 channels in each module. The kernel size of graph 

convolution and time convolution is set to 1×3. 

6) ASTGCN: The model uses an attention mechanism for extracting temporal features and a graph 

convolution model for extracting spatial features. Compared to STGCN, the model can capture 

dynamic spatiotemporal correlations in traffic flow data. Among them, the number of channels for 

GCN and TCN in each submodule is set to 1 and 64, GCN is approximated using first-order Chebyshev 

polynomials, and the convolution kernel size for time convolution layers is 1×3. 

7) GCNNM: Graph Convolutional Neural Network. The model consists of a graph convolution model 

and an attention encoder model. Among them, the graph convolution model is taken to capture the 

spatial correlation of traffic flow data, the convolution kernel size is 1×3, and the first-order Chebyshev 

approximation is used. The attention encoder model is taken to capture the temporal correlation of the 

data; the convolutional kernel size is also 1×3. The model also considers the impact of traffic accidents 

and embeds representations in the input conversion layer [36]. 

4.4 Evaluation indicators 

In terms of evaluating model performance, this work uses three metrics used to evaluate the traffic 

flow prediction function. They are mean absolute error (MAE), mean absolute percentage error 

(MAPE), root mean square error (RMSE), and symmetric mean absolute percentage error (SMAPE), 

and the specific calculation formulas are as follows: 

MAE =
1

𝑁𝑇𝑝
∑ ∑ |�̂�𝑖

𝑗 − 𝑌𝑖
𝑗|

𝑇𝑝

𝑖=1
𝑁
𝑗=1 ,                           (13) 

MAPE =
1

𝑁𝑇𝑝
∑ ∑

|�̂�𝑖
𝑗
−𝑌𝑖

𝑗
|

𝑌𝑖
𝑗

𝑇𝑝

𝑖=1
𝑁
𝑗=1 ,                                (14) 

 RMSE = √
1

𝑁𝑇𝑝
∑ ∑ (�̂�𝑖

𝑗 − 𝑌𝑖
𝑗)

𝑇𝑝

𝑖=1
𝑁
𝑗=1  ,                          (15) 

 

MAPE =
1

𝑁𝑇𝑝
∑ ∑

|�̂�𝑖
𝑗
−𝑌𝑖

𝑗
|

(|�̂�𝑖
𝑗
|−|𝑌𝑖

𝑗
|)/2

𝑇𝑝

𝑖=1
𝑁
𝑗=1 ,                     (16) 

 

where �̂�𝑖
𝑗
and 𝑌𝑖

𝑗
 represent the predicted flow and actual flow of the j-th node at the time i, respectively. 

N stands for the number of nodes. 𝑇𝑝  stands for the length of the time window for prediction. SMAPE 

is an improvement of the MAPE indicator, which avoids the problem of a small percentage difference 

in predicted values due to a small actual value. 

4.5 Quantitative analysis 

Table 1 shows how our model and the baseline model function to predict traffic flow within 15 

minutes. Comparing the two, the deep learning model proves more effective than employing traditional 

statistical models for time series data. Deep learning models can catch the temporal features inherent 

in traffic flow data very well. In the deep learning models, models that take temporal correlation and 

traffic topology into account (e.g., STGCN, ASTGCN, GCNNM, and our model) perform obviously 

better than the traditional deep learning models (LSTM, GCN). Our model takes longer to run than the 

traditional model, mainly due to the fused and complex nature of the model. The increased complexity 

of time also improves the accuracy of predictions. Also, since this work catches the influence of traffic 

accidents on other roads and constructs a traffic influence coefficient matrix, the influence of traffic 

accidents on traffic flow can be better caught. Our model performs optimally for predictions dealing 

with traffic flow data that includes the influence of traffic accidents.  

The evaluation of the model should not only consider the performance of the model but also consider 

the computational cost, as shown in Table 2. Taking the experimental dataset as an example, the 

running time of GTCN per round is 0.519 seconds, second only to GCN and STGCN. Although GCN, 

STGCN, and ASTGCN are all models composed of convolutional networks, ASTGCN is a 

multichannel composite network composed of three periods, and the calculations of the three periods 

are not parallel, resulting in a longer computational time. Similarly, LSTM time series models and 

traditional statistical models, such as HA and ARIMA, do not have the ability to perform parallel 

computing, resulting in longer runtime. In summary, GTCN can achieve parallel computing and 

effectively reduce running time. 
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4.6 Qualitative analysis 

To prove the superiority of our model, several types of baselines are set up in this experiment to 

compare with it, namely, traditional statistical models and deep learning models. The experimental 

results are plotted in the form of traffic flow data graphs, which reflect whether the trend of the model 

is consistent with the actual traffic flow data. Traditional statistical models mainly include HA and 

ARIMA, and deep learning models include GCN, LSTM, STGCN, ASTGCN, and GCNNM. 

Fig. 9 shows a comparison chart of the traffic predicted by the model proposed in this work. Fig. 9(a) 

shows the influence of traffic accidents on the road on traffic flow. Fig. 9(b) shows the influence on 

the traffic flow of the road adjacent to the road where the traffic accident occurred. It can be seen that 

using the traffic accident influence coefficient matrix, the diffusion of the influence of the traffic 

accident is well captured to accurately predict the Changes in road traffic flow and how traffic flows 

on adjacent roads are affected. 

 

 
(a) Traffic flow data on roads where traffic accidents occurred 

Table 1. Quantitative analysis results. 1 

 

Model 

PeMS19 PeMS29 

RMSE MAE MAPE SMAPE RMSE MAE MAPE SMAPE 

HA 44.93 30.14 1.34 1.455 40.25 29.63 1.20 1.34 

ARIMA 27.19 43.27 0.86 0.981 22.85 41.33 0.78 0.82 

GCN 18.83 12.72 0.59 0.670 16.68 11.69 0.54 0.61 

LSTM 38.151 26.84 0.251 2.661 33.34 24.68 0.22 0.24 

STGCN 27.91 17.44 1.122 1.198 22.49 16.88 1.02 1.21 

ASTGCN 29.196 19.57 1.662 1.775 27.64 17.89 1.44 1.43 

GCNNM 38.85 28.32 1.875 1.977 32.58 27.65 1.64 1.71 

Withou 

Cor-

GTCN 

28.007

9 

18.933 0.268 0.271 22.35 17.84 0.22 0.23 

Without 

TCN-

GTCN 

19.72 13.54 0.28 0.3001 18.54 12.21 0.24 0.247 

Without 

GCN-

GTCN 

19.13 12.88 0.24 0.2574 18.23 11.69 0.20 0.214 

Our model 18.724 12.233 0.2009 0.2249 16.45 11.02 0.198 0.207 

2 

Table 2. Model runtime comparison. 1 

Model HA ARIMA GCN LSTM STGCN ASTGCN GTCN  

Time 1.02 1.24 0.418 4.103 0.346 2.532 0.519 

 2 
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(b) Traffic flow on nearby roads affected by traffic accidents 

 

Fig. 9. Comparison chart of the predicted traffic flow by GTCN model. 

 

Fig. 10 shows a plot of traffic predicted by other models versus the true value. Fig. 10(a) and Fig. 10(b) 

are the comparison charts of the traditional statistical model HA model and ARIMA model. It can be 

found that the value ratio predicted by such a model is smaller than the actual value. This is mainly 

because the structure of such models is relatively simple, cannot handle complex and nonlinear traffic 

flow data well, and cannot capture such phenomena as a sudden decrease in traffic flow caused by 

traffic accidents. 

Fig. 10(c) and Fig. 10(d) are the comparison diagrams of the simple deep learning LSTM and GCN 

models. Observing the pictures, it can be found that the performance of this type of model has been 

improved to some extent compared with the traditional statistical model. However, there is still a 

deviation between the actual and predicted values, mainly because such models do not fully consider 

the spatiotemporal correlation of traffic flow data. LSTM is primarily used to process time series data 

and extract the temporal correlation of traffic flow but ignores its spatial correlation. Therefore, the 

sudden decrease in traffic flow on the road where the traffic accident occurred can be predicted, but 

the change in the traffic flow on the affected road cannot be well captured. Similarly, the forecast data 

of GCN is still small, its volatility is large, and some fluctuation trends are quite different from the 

fluctuation trend of the actual value. This is mainly because GCN is a graph convolutional network 

that can extract the spatial correlation of analytical data. Traffic flow data is greatly affected by spatial 

correlation. Since the data’s temporal correlation is not considered, there is a partial bias in the temporal 

correlation reflected in the fluctuations. 

Fig. 10(e) and Fig. 10(f) show the prediction results of STGCN and ASTGCN. The predictions from 

the two models are about the same. The predicted value of this type of model is consistent with the real 

value, and there is a slight deviation locally, which is slightly smaller than the real value. Likewise, the 

capture of the influence of traffic incidents on traffic flow by such models has improved compared to 

previous models, but there is still a bias. There is a lag when the predicted value drops sharply 

compared to the actual value. This is mainly due to the insufficient capture of the influence of traffic 

accidents in this model. Fig. 10(g) shows the comparison between the prediction results of the GCNNM 

model and the real values. The model is more suitable for the predicted value of traffic flow and the 

real value, but the prediction performance of the influence of traffic accidents on traffic flow is poor; 

that is, the influence cannot be captured. The coefficient influence matrix proposed in this work can 

well represent the degree of influence between any two places. According to the matrix, the degree of 

influence between two areas at any time can be quickly captured. In a traffic accident, its influence can 

also be captured soon. As shown in Fig. 10(h), the predicted value of the model proposed in this work 

is very close to the actual value. 

4.7 Ablation studies 

The model presented in this work is formed by combining components with different functions. The 

effect of different components on the total function of the model and the function of each component 

can be determined through ablation experiments. In this experiment, an ablation experiment is set up 

for three parts in the model: the temporal convolution module, the spatial convolution module, and the 

influence coefficient matrix, and the experimental results are given. Fig. 11(a) shows the performance 

of these three ablation experiments compared to the original model. 

The experimental results without considering the influence coefficient matrix of traffic accidents are 

shown in Fig. 11(b). This work captures this influence by fusing the accident influence coefficient 

matrix with raw traffic flow data before inputting it into the model. The main purpose of removing this 

coefficient matrix is to demonstrate whether there is an influence on the performance of the overall 

model without capturing this effect. Observing Fig. 11(b), it is observed that the prediction results of 

the GTCN without coefficient matrix are relatively consistent with the actual values. Still, it cannot 

accurately predict the great changes in traffic flow caused by traffic accidents. This is mainly because 

the frequency of traffic accidents is small, and the number of road nodes affected by a traffic accident 

is also small compared with the number of road nodes under normal conditions. Therefore, in 

modeling, the data of sudden drops in traffic caused by traffic accidents may be regarded as abnormal 

data and not considered. Therefore, before inputting the original traffic flow data, the influence 

coefficient matrix is embedded, which can increase the model’s emphasis on this type of data to 
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accurately capture this type of influence and improve the accuracy of traffic flow prediction. 

Experiments show that the influence coefficient matrix greatly influences the function of the whole 

model. 

 

  
（a）The result predicted by HA （b）The result predicted by 

ARIMA  

  

（c）The result predicted by 

LSTM 

（d）The result predicted by 

GCN  

 
 

（e）The result predicted by 

STGCN  

（f）The result predicted by 

ASTGCN  

 

 

（g）The result predicted by 

GCNNM  

（h）The result predicted by the 

model proposed in this work  

 

Fig. 10. Comparison between the predicted value of the baseline models and the actual. 

 

 

The results after removing the temporal convolution module are shown in Fig. 11(c). The main purpose 

of removing the TCN module is to explore the influence of extracting temporal correlation on the 

whole functionality of the model. As can be shown in the figure, the GTCN model without the TCN 

module can still catch he influence of traffic accidents on traffic flow. However, due to the removal of 

the temporal convolution module, there is a phenomenon that the lag of the predicted impact generation 

time and the fluctuation trend of the traffic flow are not consistent enough. Experimental results show 

the importance of the temporal convolution module to the overall model. 

The results of removing the spatial convolution module GCN are shown in Fig. 11(d). The main 

purpose of removing the GCN module is to explore the influence of extracting spatial correlation on 

the whole functionality of the model. The figure shows that although the GTCN model without the 

GCN module can capture the influence on traffic accidents according to the influence coefficient 

matrix, it cannot predict the degree of influence well. This is mainly because after removing the graph 

convolution module, the model cannot aggregate the relevant information of neighboring nodes to the 

central node on time. That is, the spatial correlation cannot be sufficiently extracted. Therefore, the 

overall traffic flow has a situation where the predicted value is smaller than the real value. The 

experimental results show that the spatial convolution module is important to the overall model 

performance. 
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（a）Ablation experiment results  （b）Ablation experiments to 

remove the influence of the 

coefficient matrix 

 
 

（c）Ablation experiment results 

with removal of temporal 

convolution module 

（d）Ablation experiment results 

with removal of spatial 

convolution module 

 

Fig. 11. Comparison of ablation experiment results. 

 

5. CONCLUSION AND FUTURE WORK 

To better catch the influence of traffic accidents on traffic flow and accurately predict the traffic flow 

on the road where the accident occurred and the nearby roads, this work proposes to construct an 

influence coefficient matrix to represent the degree of influence between any two road nodes and 

embed this matrix into the traffic flow data to form a new model input. After fully analyzing the 

influencing factors of traffic accidents, this work proposes a hybrid model combining graph 

convolutional network and spatiotemporal convolutional network (GTCN) for mining the 

spatiotemporal correlation of traffic flow data. The results show that the prediction results of this 

model are closer to the real values and outperform other models. 

Future research focuses on the following aspects: introducing other external factors affecting traffic 

flow into the model, such as weather factors and holiday factors, to further improve the prediction 

accuracy of the model. 
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