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ABSTRACT 

Vehicle collisions are a significant concern in road accidents, particularly with the rise of 

autonomous driving technology. However, existing studies often struggle to accurately 

predict collisions due to inconsistent correlations between collected data and collision 

labels. Therefore, this work quantitatively analyzes traffic accident data and constructs new 

features with strong correlations to the labels. In this study, a rule classification-dilated 

convolution network (R-DCN) model, which combines rule learning with dilated 

convolutional networks, is proposed. The rule learning model predicts partially collided 

vehicles using predefined rules, resulting in interpretability, high prediction efficiency, and 

quick computation. The remaining vehicle collisions are estimated using dilated 

convolutional layers, addressing the issue of missing important features in conventional 

convolution models. To distinguish between intense collisions (predicted by rule learning) 

and nonintense collisions (predicted by the dilated convolutional model), the data for 

training the network are those that remove the intense collision predicted by the rule 

learning model. The proposed model exhibits enhanced sensitivity to nonintense collision 

data. Compared to existing models, the approach presented in this work demonstrates 

superior evaluation metrics and training speed. 

 

KEYWORDS: Autonomous driving, collision prediction, dilated convolution, rule 

learning, feature construction 

 

1. INTRODUCTION 

1.1 Research Status 

Vehicle collision prediction is an important research field in autonomous driving. It helps 

ensure that the vehicle reaches its destination efficiently and safely, thereby reducing 

casualties, traffic jams, and environmental pollution caused by vehicle collisions. Recently, 

with the availability of numerous datasets, machine learning has surpassed traditional 

statistical methods in prediction. Researchers use machine learning algorithms such as 

decision trees, random forests, support vector machines (SVMs), and neural networks to 

predict vehicle collisions. They also use historical collision data and other relevant 

information as inputs to train models and learn traffic behavior patterns and collision 

probabilities. These methods have made some progress in accuracy and real-time 

prediction, but they still face challenges such as data inconsistency and computational 

resource requirements. Furthermore, deep learning methods like convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs) are widely applied in vehicle 

collision prediction [1]. These approaches can learn feature representations from raw 

sensor data and possess strong expressive capabilities. Researchers have achieved 

favorable prediction results by leveraging large-scale labeled datasets and enhancing 
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network structures. However, deep learning methods require high computational resources 

and lack interpretability. 

Intelligent transportation systems have become increasingly important and are believed to 

contribute to the sustainable development of transportation. Prediction of traffic accidents 

is a crucial and challenging problem in the field of intelligent transportation. By analyzing 

the current driving state of the vehicle, accurate predictions of future traffic accident trends 

can be made, allowing drivers to adjust their driving state promptly and avoid accidents. 

However, predicting vehicle collisions is difficult due to numerous influencing factors. 

Most existing research is based on data collected during vehicle driving, and these data are 

not strongly correlated with labels. Using this data directly has a limited impact on 

improving collision prediction accuracy and increases data collection difficulty. 

Additionally, vehicle collision prediction is a typical binary classification problem, 

classifying events as collision or noncollision. This poses another problem of the rarity of 

car crashes, as noncollision events are more common than collision events. As a result, the 

dataset may suffer from class imbalance issues. 

Currently, several common methods for predicting vehicle collisions exist, including 

machine learning-based and physical model-based methods. 

(1) Machine learning-based methods: 

Supervised learning method: Using labeled training data to train models, common 

algorithms include decision trees, random forests, SVMs, and neural networks. However, 

the performance of these methods highly depends on the quality and quantity of training 

data, and there may be overfitting or underfitting issues. 

Deep learning methods include CNNs and RNNs. These methods can automatically extract 

features from raw data, but they require a large amount of labeled data and computational 

resources and lack interpretability. 

(2) Physical model-based methods: 

Based on dynamic models: Use the vehicle's kinematic and dynamic models to predict 

collisions. These methods typically require accurate vehicle parameters and sensor 

measurement data and may pose challenges for complex traffic situations. 

Rule-based approach: Use predefined rules and logic to determine potential collision 

situations. The performance of these methods highly depends on the accuracy and 

completeness of rules and cannot capture complex nonlinear relationships. 

These methods have some common drawbacks when predicting vehicle collisions: 

⚫ Data inconsistency: The correlation between directly collected data and labels 

may be inconsistent, leading to a decrease in the accuracy of predictions. 

⚫ Incomplete data: It is often difficult to obtain complete and accurate vehicle 

behavior data and environmental information, which may affect the performance 

of the model. 

⚫ Model interpretability: Some methods, such as deep learning models, lack 

interpretability, making it difficult to understand how the model makes 

predictive decisions. 

⚫ Computing resource requirements: Some methods require many computing 

resources and extensive training time, which may be challenging for real-time 

applications and large-scale deployment. 

To address the limitations of previous studies, this work applies data preprocessing 

techniques that align with the characteristics of the collected data. By analyzing the data 

features, this work constructs new relevant features verified to be highly correlated with 

labels. Additionally, to tackle the class imbalance issue, this work incorporates a synthetic 

minority oversampling technique (SMOTE). While previous studies have utilized different 

resampling techniques, the construction of test data is often done manually, which can 

impact the real-world application performance of the computational model and may result 

in the loss of valuable information regarding noncollision events. By exclusively applying 

SMOTE to the training set, this approach ensures that the test dataset reflects real-world 

information while retaining valuable information about noncollision events during the 

training process. Furthermore, this work introduces a novel prediction model called the R-

DCN model for vehicle collision prediction. Leveraging prior knowledge and analysis of 

noncollision cases, this work derives rules for a rule learning model, where critical 

acceleration can indicate collision [2]. When critical acceleration features, such as 

instantaneous acceleration, fall below a specified value, this work identifies it as a collision. 

Given the consistent behavior of this type of data, it is collectively referred to as "intense 

collision." Conversely, the R-DCN model employs dilated convolutional networks to 

predict nonintense collisions. Compared to ordinary CNNs, dilated convolutional networks 

expand the receptive field, addressing potential information loss and considering the 

correlation between the whole and the parts. This makes them more accurate in predicting 
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nonintense collisions, effectively capturing most collisions and displaying sensitivity to 

nonintense collision data. 

1.2 Related Work 

Traffic safety has always been a significant concern, and numerous literary works have 

discussed ways to enhance it. The existing safety system primarily comprises collision 

prediction and automatic braking, with collision prediction being of utmost importance. 

Therefore, first, we will review the previously proposed collision prediction algorithms. 

Methods based on the Internet of Vehicles (IoV) can be categorized into traditional 

parametric methods and artificial intelligence-based methods. Parametric methods rely on 

mathematical formulas to identify the relationship between independent and dependent 

variables. Rear-end collision prediction extensively utilizes parametric methods, such as 

the Honda algorithm, which is a time-to-collision (TTC) algorithm. Sensitivity analysis 

resulted in a threshold value of 2.2 sec [3]. However, the thresholds in these parametric 

methods are fixed or derived from specific formulas, and their impact can vary in different 

environments. Moreover, even in similar environments, different drivers may have 

different perception thresholds. If the threshold is too low, drivers may not have sufficient 

time to react appropriately. Conversely, if the threshold is set too high, it could lead to 

numerous false warnings, potentially causing drivers to ignore or reduce the frequency of 

using warnings. Thus, it can be concluded that parametric methods do not apply effectively 

in real-world driving situations. 

In a prior study [4], logistic regression (LR) was employed to examine the occurrence of 

traffic accidents in the United States. The results indicated that speed and seat belt usage 

are significant parameters for predicting the severity of traffic accidents. LR provides 

interpretability. However, LR is prone to overfitting, reducing the model's robustness. With 

the ease of data collection and advancements in computing, greater attention has been given 

to artificial intelligence-based methods. Researchers proposed several collision warning 

algorithms based on artificial intelligence, including prevalent machine learning algorithms 

such as decision trees and SVMs. These algorithms effectively address the overfitting issue 

and enhance prediction accuracy [5]. Furthermore, Huang et al. [6] introduced the 

application of a CNN with a dropout operation, whereas Ren et al. [7] suggested the use of 

a long short-term memory neural network (LSTM) for vehicle collision prediction. Such 

methods can extract high-dimensional information and capture hierarchical features in 

datasets. They overcome the challenge of low prediction accuracy encountered by logistic 

models and SVMs and demonstrate greater sensitivity. However, a previous study [8] 

comparing traffic incident prediction revealed that machine learning models lack variable 

explanation, and rule-based models require a substantial number of samples. This work 

combines an interpretable rule learning model with a dilated convolutional model to 

address these limitations. 

Another study [9] argued that traffic variables are critical in predicting car crashes. 

Quantifying their impact has facilitated the development of countermeasures to enhance 

traffic safety. Since vehicle collisions primarily occur when vehicles are in motion, the 

influence of traffic variables on collisions is inevitable. Numerous studies have analyzed 

the relationship between potential collision probability and various traffic variables. For 

instance, in the work conducted by [10], the impact of specific variables on vehicles in 

hazardous conditions was observed, with traffic speed identified as the most crucial 

parameter. Based on this knowledge, this work constructs several related features based on 

the collected speed data to make corresponding predictions. Experimental results 

demonstrate substantial improvement in prediction accuracy. 

1.3 Contributions  

This work proposes a model R-DCN for predicting whether a vehicle has a collision. It 

uses the state information and motion information of the vehicle at a specific time to predict 

whether a collision could occur. The contributions of this paper are as follows:  

(1) In this work, vehicle collisions are predicted from the data analysis perspective. 

Compared with the existing research, this work trains the model based on the features 

constructed from the collected vehicle information rather than directly using the collected 

data. It is of great significance for improving the accuracy of vehicle collision prediction 

and reducing the time used. It is also of great significance to improve the performance of 

the vehicle-assisted driving system. 

(2) This work introduces a model R-DCN that fuses a rule learning model with a dilated 

convolutional network. The rule learning model is mainly based on the defined rules to 

predict vehicle collisions quickly. A dilated convolutional network makes predictions on 

the remaining vehicles. Thereby, prediction accuracy is improved and the time required for 

prediction is reduced.  
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(3) This work uses a real dataset for experimental evaluation. The results show that the 

model formed by combining rule learning with the dilated convolutional network is highly 

accurate for predicting vehicle collisions. Compared with existing models for predicting 

vehicle collisions, the model prediction accuracy is improved by at least 12%. 

 

2. METHODOLOGY  

2.1 Data Preprocessing  

Sufficient analysis of the raw data is helpful for understanding and selecting appropriate 

data. Therefore, before conducting experiments, this work first implements data cleaning 

and solves the class imbalance problem. 

2.1.1 Data Cleansing  

Data cleansing refers to identifying and handling incomplete, incorrect, inaccurate, and 

irrelevant data in a dataset. Common methods used for processing include deletion, 

replacement, or modification. In this work, the focus is on the label set. Based on reading 

materials and general knowledge, the label set is expected to possess the following 

characteristics. Firstly, during a vehicle collision, the state of the main negative relay changes 

from connected to disconnected. This is due to the car's built-in short circuit prevention 

function. Specifically, when a collision occurs, the airbag controller sends a signal to the 

battery management system, which then disconnects the high voltage through the battery 

relay to prevent fires. Secondly, a significant change in vehicle speed is expected during a 

collision. Considering these factors, anomalies are identified in the raw label set and 

corrections are made to five labels. For example, for car number 5, there is a malfunction in 

the vehicle sensor, resulting in a constant speed of "0" before and after the collision. Hence, 

the collision label for that car is changed to "0." 

Upon initial analysis, it was observed that some data in the dataset were missing. To address 

this, a novel data-cleaning approach is proposed. For data with a missingness rate exceeding 

10%, deletion is directly applied. The quantity of deleted data is minimal and is not expected 

to impact the experimental results significantly. Furthermore, deduplication is performed on 

the dataset, keeping only the first data entry for vehicles with the same vehicle number and 

collection time. The data is then sorted based on collection time. Additionally, data where 

the "seat occupancy status of main driver" is recorded as "sensor failure" are also removed 

to ensure data authenticity and reliability. 

2.1.2 Data Imbalance  

After integrating the dataset with the label set, it was observed in this work that the number 

of collision data instances is significantly lower than that of noncollision data instances. 

Common methods used to address the class imbalance issue include under-sampling the 

noncollision data, oversampling the collision data, and other processing techniques. 

However, using under-sampling alone could result in the loss of a significant amount of 

noncollision data and important related information. Similarly, relying solely on 

oversampling could excessively emphasize the characteristics of collision data and lead to 

overfitting. To overcome these challenges, the SMOTE (synthetic minority oversampling 

technique) approach is employed in this experiment. This method is a traditional 

oversampling technique [11]. It involves creating a vector between the collision data and its 

k nearest neighbors and then multiplying this vector by a random constant between 0 and 1. 

The resulting vector is added to the dataset as new collision data. Using this approach, a 

collision data to noncollision data ratio of 1:1 is achieved. Previous studies, such as the one 

conducted by Basso et al., successfully utilized the SMOTE method to generate collision 

data for highway vehicles, demonstrating good alignment with real data [12]. Additionally, 

many existing collision prediction experiments have adopted algorithms based on SMOTE-

balanced datasets, yielding promising predictive performance [13]. The accuracy of 

prediction can be improved using the SMOTE method. 

 

2.2 Problem Definition and Data Design  

2.2.1 Problem Definition  

The vehicle collision prediction problem can be defined as predicting whether the vehicle 

will collide based on the current relevant attribute information of the vehicle (

 1 2 1, ,..., ,n nx x x x− , where n represents the number of attributes). That is, the collected 

information of the vehicle in motion and the feature constructed on this basis are used as the 

input of the model. The output of the model is to predict whether a collision will occur. The 

formula is shown in (1). In this way, the task of predicting whether a vehicle collision occurs 

or not is realized. 

𝑦𝑖 = 𝑀(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛),                                         (1) 

Among them, M represents the modeling method and n is the number of features. 
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2.2.2 Data Design  

Usually, the description of an object could involve multiple attributes. These attributes 

include related features, irrelevant features, and redundant features. The dataset used in this 

study contains a total of 22 attributes. It is too complicated to use all the features to predict 

vehicle collisions, which could greatly increase the difficulty and time of training. Therefore, 

this experiment is based on this dataset to process the data. 

2.2.2.1 Data Transformation  

Firstly, the features in the dataset are classified into two categories: state information and 

motion information. The state information mainly includes a description of the vehicle and 

the driver's state at the current time point. Conclusions can be drawn by calculating the 

correlation between state information and prediction results. For state information, the most 

important features are the start-stop state of the vehicle. And because the start-stop state of 

the vehicle could be inferred through the change of the vehicle's relay state, this work uses 

the relay state to construct the if_off feature to represent the start-stop state of vehicle. In the 

data preprocessing stage, this work encodes the state of the main negative relay of battery. 

Moreover, the difference between each data and the previous five times separately was 

calculated to get the state change of the battery five times. This work sums these five values 

to describe the state change of the battery over the previous time period. i.e., the value of 

if_off. As shown in Fig. 1, when the relay state changes from connected to disconnected, the 

feature value could change from continuous “1” to continuous “0.” On the if_off eigenvalue, 

it gradually changes from “-5” to “-1” and it is “0” at the rest of the time. 

 

 
Figure 1: if_off feature structure 

 

Second, categorical feature encoding was performed; i.e., nonnumeric features in the raw 

dataset were encoded. Then, they were turned into statistical data types. The specific 

transformation is shown in Table 1. 

 

Table 1: Features for categorical feature encoding. 

Features Nonnumeric value Numeric value 

Brake pedal status Not stepped  0 

Step on 1 

Driver departure reminder No warning 0 

Warning (Remove the key) 1 

Main driver's seat occupancy status Vacant 0 

Occupancy 1 

Driver's safety belt status Tied 0 

Not tied 1 

Handbrake status Handbrake down 0 

Handbrake up 1 

Vehicle key status OFF 0 

ON 1 

The current gear status of the 

vehicle 

Neutral 0 

Forward 1 
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Finally, according to the conclusions drawn from previous studies, traffic speed has a greater 

impact on the occurrence of traffic accidents. This work has constructed the relevant feature. 

By analyzing the data in the dataset and the speed of the vehicle at different times, this work 

constructs several features about the vehicle's motion state, which are the vehicle's 

instantaneous acceleration (𝑣𝑖𝑛𝑠𝑡𝑎𝑛𝑡
𝑖 ), local acceleration (𝑣𝑙𝑜𝑐𝑎𝑙

𝑖 ), speed difference 

(𝑣𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
𝑖 ), and acceleration statistics ( _i meana

, _i mina
, _i maxa

). At the same time, the 

bucketing operation was performed on the vehicle speed difference feature. Features were 

defined as follows: 

 

 

Among them, iv
 represents the vehicle speed at the i-th time and it  is the i-th time. 

 

2.2.2.2 Correlation Analysis and Feature Selection 

Selecting relevant features from these features is important for collision prediction since only 

relevant features can help improve the accuracy of model predictions. There are related 

strategies for feature engineering in different fields. Correlation can help identify features 

that are highly correlated with the target variable, thereby providing better predictive 

performance. This information can help eliminate redundant features, reduce data 

dimensionality, and improve the interpretability and generalization capability of the model. 

However, correlation as a feature selection method also has limitations, as it can only capture 

linear relationships and may not accurately describe nonlinear relationships. The principle 

of feature selection methods is based on measuring the degree of correlation between 

features and the target variable to identify the most relevant features to the target variable. 

Feature selection is of great importance in machine learning and data mining, as it can help 

improve the model’s generalization capability and reduce the risk of overfitting [14]. This 

work mainly uses feature classification and computational correlation for feature selection. 

Before using the model to predict vehicle collision, this work verifies the correlation between 

the given data to determine the necessity of using the model prediction. If the data in the 

dataset is highly correlated, then this work can directly use the linear model to make 

predictions. The training process of the linear model is much simpler than the model 

prediction. This work verifies the correlation of the features in the dataset except for the car 

number and collection time. The results are plotted as a Pearson correlation coefficient 

matrix. Its correlation coefficient is calculated according to formula (6). The result is shown 

in Fig. 2. The graph can describe the correlation between various features in detail and 

intuitively. Furthermore, according to this, you can determine whether you need to use a 

linear algorithm for prediction. 
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The Pearson correlation coefficient map mainly represents the correlation between features 

according to the depth of the color [15]. The darker the color, the higher the correlation 

between the features. As shown in Fig. 2, the correlation between the given data is not high, 

indicating that simple linear models may not predict the occurrence of collisions well. Thus, 

we must solve this problem through a deep learning algorithm. Of course, the correlation 

between the two is still relatively high when it comes to the features of the vehicle's own 

state, such as the current and voltage of the current vehicle. This in itself is logically factual 

and speaks to the reliability of this dataset.  
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(3) 

𝑣𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
𝑖

1i iv v −= −  

 

(4) 

_ 2 1( _ 1 _ 1 _ 1 )i mean i i ia mean v diff v diff v diff− −= + + _ 2 1( _ 1 _ 1 _ 1 )i min i i ia min v diff v diff v diff− −= + +
     

_ 2 1( _ 1 _ 1 _ 1 )i max i i ia max v diff v diff v diff− −= + +
      

 

 

(5) 
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Figure 2: Correlation between features. 

 

The correlations between two types of features and labels, state information and motion 

information, are calculated separately. The results are shown in Fig. 3. This work can 

conclude that the motion information of the vehicle has a greater impact on the accuracy of 

collision prediction. Therefore, this work selects all the features in the vehicle motion 

information and the top two features in the state information, i.e., the vehicle instantaneous 

acceleration (𝑣𝑖𝑛𝑠𝑡𝑎𝑛𝑡
𝑖 ), the local acceleration (𝑣𝑙𝑜𝑐𝑎𝑙

𝑖 ), the acceleration statistics ( _i meana
、

_i mina
、 _i maxa

), and the key state (key_std) and if_off . Research on vehicle collision 

prediction was conducted using these seven classes of features. 

 

 
 

Figure 3a: Correlation between motion state and label. 
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Figure 3b: Correlation between state information features and collision labels. 

 

2.3. Model Design  

The main structure of the model is introduced in this section in Fig. 4. Firstly, all the 

preprocessed data apply a rule learning model. The model predicts vehicle collisions through 

defined rules. Second, the relevant information of noncollision vehicles predicted by rule 

learning is used as the input data of the dilated convolutional network. This work selects 

seven features with strong label correlation as input in this process. Finally, the final features 

are normalized and linearized to the result of whether the vehicle has a collision. The dilated 

convolutional layer expends the receptive field, allowing each convolutional output to 

contain a wider range of information. Furthermore, this layer reduces the computational 

complexity of the model. 

 

 
Figure 4: The main structure of the model 

 

2.3.1 Rule Classification Layer  

In this experiment, the rule learning model is used as the rule classification layer. The 

function of this layer is to quickly predict partial results according to the defined association 

rules [16]. This improves the speed of model prediction. Rule learning is to learn a set of 

rules for judging unseen examples from training data. It is also a manifestation of the 

characteristics of the predicted target data. Building a rule model itself is an advanced feature 
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engineering. Rule learning has better explanations than "black-box models," such as neural 

networks and SVMs. It can give a more intuitive understanding of the classification process. 

It can be obtained from the previously analyzed correlation of features and collision labels. 

Several velocity-related features constructed have the highest correlation with the predicted 

results. Some previous work found that the value based on the critical deceleration is a good 

way to judge whether a collision occurs. Therefore, some studies use critical deceleration as 

a sign of collision, for example, 5.892 [17]. In this work, a rule model is established based 

on the relationship between the three characteristics of instantaneous acceleration, local 

acceleration, and velocity difference from the previous moment and the predicted target. The 

specific representation is as follows: 

If 𝑣𝑖𝑛𝑠𝑡𝑎𝑛𝑡<a OR 𝑣𝑙𝑜𝑐𝑎𝑙  < b OR 𝑣𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 <c THEN Label=1         (7) 

To better adapt to the actual environment, this work visualizes the distribution of the 

constructed features, as shown in Fig. 5. This work revealed that when the instantaneous 

acceleration (𝑣𝑖𝑛𝑠𝑡𝑎𝑛𝑡
𝑖 ) is less than -4, the local acceleration (𝑣𝑙𝑜𝑐𝑎𝑙

𝑖 ) is less than -3, and the 

speed difference from the previous moment (𝑣𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
𝑖 ) is less than -20, the phenomenon of 

collision begins to appear. Considering the generalization ability of the algorithm, this work 

sets the separation threshold very large. More than twice the minimum value of the three 

features of the noncollision data is taken as the separation threshold to avoid overfitting. In 

this study, this work defines a collision as a rule when the instantaneous acceleration is less 

than -9 m/s2, the local acceleration is less than -6 m/s2, and the acceleration difference is 

less than -40 m/s2. The vehicle collision predicted by the rule learning model has high data 

consistency and a large absolute value, so this work calls it an intense collision. The data 

predicted by the rule learning model as noncollision are input into the dilated convolution 

model, and the predicted vehicle collision is a nonintense collision. 

 

 
(a) Instantaneous acceleration value distribution 

 
(b) Local acceleration value distribution 

 
(c) Distribution of velocity difference from the previous moment 

Figure 5: The value of features distribution. 

 

2.3.2 Dilated Convolution Model  

The convolutional network used in this experiment is composed of the dilated network as 

the standard convolutional layer. Furthermore, this work encapsulates the convolution layer 

and the identity map into a residual module. The deep network is then stacked by the residual 

module. Finally, set the fully connected layer. 

The residual module structure is shown in Fig. 6. The introduction of the residual module 

solves the training problem of deep networks and the problem of gradient disappearance or 
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gradient explosion [18]. The dilated convolution formula is shown in (8). 
 1 2, ,..., tx x x

 is 

the input sequence, 
 1 2, ,..., ty y y

 is the output sequence of the hidden layer, and

 1 2, ,..., tf f f
 are the filters. The filter sequence represents the change of the convolution 

kernel in multiple hidden layers, which determines the change of the receptive field of the 

convolutional network in the hidden layer. d represents the dilation factor, which varies by 

an exponential of “2” depending on the depth of the network. 

                                               
1

0

y
K

t i t i d

i

f x
−

− 

=

= 
 

             

（8） 

Among them, the model's input is three-dimensional (N, C, L). N represents the batch size, 

C is the dimension of the input data, and L represents the length of the sequence, i.e., the 

number of features of the data. In the first residual block, the input data is 50×1×7 and the 

output data is 50×6×7. The input and output data are both 50×6×7 in the remaining two 

residual blocks. 

 
Figure 6: Residual block structure. 

 

The function of the fully connected layer is to integrate the features and output them as a 

value. As shown in formula (9). The input of this layer is the feature extracted by the network 

from the input data, i.e., x. In this experiment, the dimension of the input data is 50×6×7. We 

can regard 𝑤𝑗 as the weight of the feature under the j-th category, i.e., the importance of each 

dimension feature or the degree of influence on the final classification. Moreover, scores for 

each category are obtained by weighted summation of the features. The final output data is 

50×2. 

                       

1 1 2 2 ...i i i i i i i in in iz w x b w x w x w x b=  + = + + + +
   

(9) 

This experiment predicts whether a vehicle collides, which is a binary classification problem. 

Therefore, this work applies a normalization function to the data output by the fully 

connected layer. The normalization function mainly plays the role of mapping the output of 

the fully connected layer to the probability of its category. The normalization function used 

in this experiment is Log SoftMax, which mainly solves the phenomenon of data overflow 

in the SoftMax function. Log SoftMax can also convert exponential calculations into 

addition calculations, thereby improving calculation efficiency and data stability [19]. The 

calculation formula is as follows: 

 
1 21 2

( )

( )

( ) ( )( )

log ( ) log log log
...

...

log( ) log( ) ( ) log( )
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i i

nn j
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x x M

i x nx x xx x x M

j
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e e x M e

−

−

− −−

 
   
 = = =  
 + + +    + + +   

 

= − = − −



 
 

(

1

0

) 

Among them, 
max( )iM x=

 
1, 2,...,i n=

. That is, M is the maximum value among all 

𝑥𝑖. 

 

3. EXPERIMENTS AND RESULTS  

This section introduces the specific experimental process and the experimental results 

obtained according to our proposed method. The experimental process is shown in Fig. 7. 

To verify that this method predicts better, this work also implements several other models. 

Furthermore, using the same dataset to train the model, the prediction results show that our 

proposed model fused rule learning and dilated convolution (R-DCN) has high accuracy for 

predicting collisions. 
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Figure 7: Experimental flowchart. 

 

3.1 Dataset Introduction  

This research and analysis are based on the IoV, and various information data are obtained 

through various sensors. The IoV information primarily includes vehicle control 

information, battery information, and motor information. The data comes from real datasets. 

There are 19 features of vehicle information data, such as vehicle number, accelerator pedal 

position, battery pack main negative relay status, battery pack main positive relay, brake 

pedal status, a driver leaving prompt, main driver seat occupancy status, driver seat belt 

status, driver demand torque value, handbrake status, vehicle key status, low voltage battery 

voltage, vehicle current gear status, vehicle current, vehicle current voltage, vehicle mileage, 

vehicle speed, and steering wheel angle and other characteristics. Table 2 shows the structure 

of this dataset. 

Table 2: Dataset structure 

 

 

Num 

 

Collection time 

 

Accelerator 

pedal position 

Battery pack 

main negative 

relay status 

Battery pack main 

positive relay 

status 

 

Brake pedal status 

1 2020/8/30 9:30 27 Link Link Not stepped 

 

Driver departure 

reminder 

Main driver's seat 

occupancy status 

 

Driver seat belt 

status 

 

Handbrake status 

 

vehicle key status 

Low voltage 

battery voltage 

 

No Warning 
 

Someone 

 

Already tied 

Put down the 

handbrake 

 

ON 

 

13.89 

The current gear 

status of the 

vehicle 

The current total 

current of the 

vehicle 

The current total 

voltage of the 

vehicle 

 

Vehicle miles 

 

Speed 

 

Steering wheel 

angle 

forward 53.6 121.9 7667 24.2 9.5 

 

if_off 

 

Instantaneous 

acceleration 

 

Local 

acceleration 

 

Speed difference 

Acceleration 

statistic maximum 

Statistical 

minimum of 

acceleration 

-5 -19.7 -20.9 -10.7 2.06 -12.81 

Statistical average 

of acceleration 

 

Label 
    

-8.06 1     

 

3.2 Baseline Introduction 

To prove the performance of the model, this work selects several representative baselines 

for comparison. The selected baselines include a traditional statistical model (Honda 

algorithm), a machine learning model (LR model), two traditional recurrent neural networks 

(RNN, GRU), and three new models (RFCNN, Multi-Task DNN, CNN-GRU). The details 

are as follows:  

1) Honda algorithm: The Honda algorithm is an understanding warning algorithm based 

on the TTC algorithm. According to sensitivity analysis, the threshold is set to 2.2 seconds 

[3]. Its formula is (11). 

           
2.2 6.2warning relR V= +

 
（11） 
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2) Logistic Regression: The LR model is widely used in traffic safety [13]. The essence of 

this model is a classification model, and the most common one is to implement binary 

classification. The idea of this algorithm is to map the result of a linear function onto a 

sigmoid function. Usually, the dependent variable is a binary indicator of collision 

occurrence. The probability of collision is P(y=1), and the probability of noncollision is 

P(y=0).  

Related parameter settings: 

C: The reciprocal of regularization intensity, floating-point number, is set to 1.0 in this 

experiment. Regularization helps avoid overfitting, and a smaller C value indicates a 

stronger regularization term; Penalty: Regularization type, string {'l1 ','l2', 'elasticnet', 

'none'}, set to 'l2' in this experiment. It determines the type of norm used for regularization, 

where 'l1' represents L1 regularization and 'l2' represents L2 regularization; Max_ Iter: 

Maximum number of iterations, integer, set to 100 in this experiment; Solver: Optimization 

algorithm, string {'newton cg ',' lbfgs', 'liblinear', 'sag', 'saga'}, set to 'lbfgs' in this experiment. 

The formula looks like this: 

y ( )Bernoull p
 (12) 

    
log ( )it p x = +

 (13) 

3) Convolutional Neural Network (CNN): CNN is a deep neural network mainly used to 

process complex data [19]. CNN models have convolutional layers, pooling layers, 

activation layers, dropout layers, and flatten layers. The convolutional layer is used to extract 

the features of the data, the pooling layer reduces the size of the features, the dropout layer 

is used to reduce overfitting, and the flatten layer is used to convert the input data into an 

array. It is widely used in the field of predicting vehicle collisions. Especially when the input 

data is multidimensional, it can better capture the influence of features on the prediction 

results. Convolutional kernel size is 3 * 3, using maximum pooling 

4) GRU: GRU model is a variant of LSTM model and RNN model. It is like LSTM, so GRU 

can also solve the problem of long-term dependency caused by gradient explosion or 

gradient disappearance in RNN. Concurrently, compared with LSTM, the structure is 

simpler and easier to calculate [20]. 

Related parameter settings: 

Hidden size: 256; embedding dimension of words: 300; batch size: 64; learning rate: 0.001; 

number of iterations of training: 10. 

5) RFCNN: RFCNN is obtained by combining tree-based machine learning models and 

deep learning models (RF and CNN). The final class is decided according to the maximum 

average probability mainly by soft voting the predicted probabilities made by the two 

classifiers. It is mainly used to predict traffic accidents. 

Related parameter settings: 

N_ Estimators: The number of trees in a random forest. Set to 200; Max_ Depth: The 

maximum depth of each tree. Control the growth depth of the tree and set it to 20; Min_ 

Samples_ Split: The minimum number of samples required for node splitting, set to 3; Min_ 

Samples_ Leaf: The minimum number of samples required for the leaf node, set to 2; 

Criterion: Select 'gini' as the standard used for splitting. 

6) CNN-GRU: CNN-GRU is a model obtained by combining two deep learning methods. 

The primary consideration is that various models have different advantages and can be 

combined to get more accurate predictions. The CNN part of the model can mainly learn 

local representations in the data. The GRU can extract temporal dependencies from the local 

features. It also has applications in the field of traffic safety. Its parameter settings are the 

same as those of CNN and GRU. 

7) MCWA: MCWA is a collision warning algorithm based on a multilayer perceptron neural 

network, which is mainly composed of an input layer, a hidden layer, and an output layer. It 

mainly achieves the ability to predict and detect possible severe decelerations in the ensuing 

seconds, thereby reducing the risk of collisions without being affected by the PRT of 

different humans. The feature extractor chooses to use a pretrained CNN, ResNet. 

3.3 Quantitative Analysis  

In the aspect of the evaluation model, this work adopts four indicators and an ROC curve 

based on the confusion matrix. In the confusion matrix, accuracy is an evaluation index for 

traditional classification problems, which represents the proportion of the total data set of all 

correctly judged result stations in the entire classification model [21]. However, the accuracy 

rate has a disadvantage. When the categories of the data are not uniformly distributed, the 

accuracy rate is no longer objective. Therefore, this work introduces Precision, Recall, and 

F1 Score as evaluation metrics [22]. The specific calculation is shown in Table 3. 
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Table 3: Calculation method of evaluation index. 

 

Indicators Calculation methods 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

The ROC curve is a graph showing the performance of the classification model under all 

classification thresholds. The vertical axis of this curve is true positive rate (TPR), and the 

horizontal axis is false positive rate (FPR). The calculation formula is as follows: the closer 

the classification target to the (0,1) point, the better the performance of the classifier [23]. 

The ROC curve of the above model is shown in Fig. 8. Compared with other models, the 

ROC curve of the R-DCN model is closer to the upper left corner, i.e., the classification 

performance of R-DCN is better than that of other models. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(14) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(15) 

 
Figure 8: ROC curves of various models. 

 

Table 4: Quantitative analysis results. 

 

 Accuracy Precise Recall F1 Score 

GRU 0.4022 0.4416 0.439 0.4403 

CNN-

GRU 

0.500 0.5384 0.5698 0.5537 

LR 0.745 0.858 0.586 0.696 

CNN 0.712 0.674 0.770 0.722 

Honda 0.59 0.78 0.7547 0.767 

MCWA 0.836 0.800 0.8118 0.8058 

RFCNN 0.812 0.842 0.864 0.853 

R-DCN 0.9533 0.9675 0.9320 0.9477 

 

The evaluation results of all models are shown in Table 4. R-DCN has significant 

performance improvement compared to other models. For the F1 Score indicator, the R-

DCN model has an increase of 115.92% relative to GRU, 71.42% relative to CNN-GRU, 

36.22% relative to LR, 31.12% relative to CNN, 23.48% relative to Honda, 17.57% relative 

to MCWA, and 11.12% relative to RFCNN. The results show that the proposed R-DCN is 

effective. The Honda algorithm is a traditional statistical method, and the experimental 

results vary significantly in different environments, so accuracy is low. The LR model is a 

simple machine learning model that solves the problem of different external environments 

that make the results different. However, due to the structure of LR being relatively simple, 

there could be underfitting during the experiment, resulting in poor performance; CNN and 
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GRU are traditional deep learning models, and the accuracy of the model has been improved. 

But they have a narrower field of view compared to dilated convolutions. So, they perform 

poorly under the same conditions; the CNN-GRU and RFCNN integrated model have 

complex structures, and their time-consuming increases in the case of improved accuracy in 

predicting vehicle collisions. In contrast, the combination of the R-DCN model improves the 

accuracy of the model. Concurrently, the rule classification algorithm uses prior knowledge 

to judge collisions, greatly reducing the time of model training and predicting. 

The rule learning and dilated convolution models can reduce training and inference time. 

The evaluation results of all models are shown in Table 5. The results in Table 5 show that 

the R-DCN model can reduce training and inference time compared to other baseline models. 

 

Table 5: Quantitative analysis results. 

 

 Training time Inference time 

GRU 3.9 min 2 ms 

CNN-GRU 39 min 16 ms 

LR 17 s 2 ms 

CNN 3.5 min 2 ms 

Honda 4.9 min 3 ms 

MCWA 16 min 4 ms 

RFCNN 1.6 h 7 s 

R-DCN 1.3 min 2 ms 

 

3.4 Qualitative Analysis  

As shown in Fig. 9, in this experiment, the data in the raw dataset, the data after feature 

construction, and the data after feature engineering are input into the model for experiments. 

The experimental results show that the data after feature engineering as the model's input 

has the highest prediction accuracy. This is mainly because, after feature engineering, this 

work selects seven features from data that are highly correlated with labels as input, which 

improves prediction accuracy and saves time in training the model. The data in the raw 

dataset is weakly correlated with the labels, making the model perform poorly. In the data 

after feature construction, there are features with a strong correlation with the label but also 

features with a weak correlation or irrelevance. Therefore, the model's performance is not 

good, and the training time of the model is increased. 

 

 
Figure 9: Prediction results of raw data, all data, and selected data as input, 

 respectively 

 

3.5 Ablation Experiments 

In this section, to verify the significant superiority of the proposed model, this work sets up 

two related ablation experiments. Firstly, it is verified that the fusion of the rule learning 

model and the DCN model has significant advantages in traffic collision prediction. This 

work compares it with the result obtained by directly inputting the processed data into DCN 

without the rule learning part. Second, to verify that three-layer dilated convolution is the 

most suitable number of layers, we design an ablation experiment on the number of layers, 

using four-layer and five-layer dilated convolution for prediction, respectively. The 

computational progress of each algorithm is calculated and recorded by the same computer, 

and the results are shown in Fig. 10. 
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Fig. 10-a shows that the rule learning model [24] plays a vital role in the entire model, which 

helps to improve the prediction of nonintense collisions. The model without the rule 

classification layer has the worst prediction accuracy. At the same time, this result also shows 

the necessity of feature extraction for the raw data. This work finally selects seven features 

for prediction by calculating the correlation coefficient between the raw features and the 

label of collision. This not only improves the predictive performance of the model but also 

reduces the cost of data collection. Fig. 10-b shows that when the number of layers is set to 

3 for the dilated convolutional model, its performance is the best. The accuracy begins to 

decline when the number of layers is greater than 3. Although the difference is not obvious, 

it also helps improve the prediction accuracy and, simultaneously, reduces the time to train 

the model. 

 
(a) Comparison of experimental results of models with and without regular learning layers. 

 
 

(b) Comparison of the prediction results of models with different layers. 

Figure 10: Comparison of ablation experiments results. 

 

4. SUMMARY  

Traffic accidents are the fundamental cause of casualties and property damage, and they are 

also a key issue for public health and safety. Prediction of traffic accidents is essential to 

preventing and reducing the occurrence of traffic accidents [25]. In this study, this work first 

cleans up the data and constructs and selects features based on the original feature data to 

ensure a higher correlation between input data and results and more accurate prediction 

results. Second, a model R-DCN was designed that fused a rule learning model and a dilated 

convolutional model to predict the occurrence of vehicle collisions. The experimental results 

show that the prediction results of the model have improved accuracy compared with 

existing models. On the other hand, this work constructs new features based on the raw 

features. By calculating the correlation of the overall features, the salient features, i.e., 

related features, are identified. By experimenting with overall features and correlation 

features separately [26-29], we can see that the experimental results are greatly improved. 

Therefore, we can also conclude that using relevant features can help improve the model's 

predictive performance and reduce the data collection cost. Despite the superiority of the 

proposed model, it also increases the complexity compared to a single model, which is an 

issue that needs to be addressed in future work. Furthermore, the next step is to apply the 

model to other datasets to demonstrate its effectiveness and generalizability. 
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