Electrical Equivalent Circuit Modeling of Various Electrically Small Antennas for Biomedical Applications
PDF

Keywords

ESA
Antenna Modeling
Silicon
OCA
ISM
UWB
THz
Antenna Array
Biomedical

How to Cite

Karmakar, A. ., & Biswas , B. . (2022). Electrical Equivalent Circuit Modeling of Various Electrically Small Antennas for Biomedical Applications. Annals of Applied Sciences, 1. Retrieved from https://mediterraneanjournals.com/index.php/aas/article/view/600

Abstract

This work outlines the design and development activities of various electrically small antennas for bio-medical applications. It also covers the electrical modeling aspects of all these miniaturized antennas. Three antennas with different specifications have been discussed with diversified proposed applications. First example deals with a single frequency (9.45 GHz) on-chip antenna, whereas the second one covers an ultra-wideband frequency range (2.5 to 20.6 GHz) and finally the third antenna targets an application for 100 GHz band. The size of the first one is 2×2.1 mm2, while the second on-chip antenna occupies an area of about 4.6 ×11.5 mm2 over silicon substrate. The third antenna module is developed on LCP substrate, which can be accommodated within 12.5×27 mm2 area. Though the two on-chip antennas offer only lower gain of around -29 dBi and -3 dBi respectively implementing silicon as a base material, but it paves the way for monolithic integration within a chip. The third candidate exhibits a directive gain of 19-20 dBi with a radiation efficiency of 80% over 100 GHz band. The highlighted portion of this current research work is to propose empirical modeling of electrically small antennas. The proposed methods claim to be most simple in nature and without applying complicated mathematical jugglery easy circuit models are presented for these aforesaid antennas, going to the insight of device physics. A comparative study has been carried out with the proposed model and full-wave simulated results for each antenna, to validate the circuit models.

PDF

References

Best SR, Hanna DL. A performances comparison of fundamental small-antenna design. IEEE Antennas propagation. 2010; 52(1): 47-70. https://doi.org/10.1109/MAP.2010.5466398

Oleksiy SK, Breinbjerg O, Yaghjian AD. Electrically small magnetic dipole antennas with quality factors approaching the chug lower bound. IEEE Antennas Propagation. 2010; 58(6):1898-1906. https://doi.org/10.1109/TAP.2010.2046864

Biswas B, Ghatak R, Poddar DR. UWB monopole antenna with multiple fractal slots for band notch characteristic and integrated Bluetooth functionality. J Electr Waves Application. 2015;29(12):1593-1609. https://doi.org/10.1080/09205071.2015.1054521

Wheeler H. Small antennas. IEEE Antennas propagation. 1975; 23(4):462-469. https://doi.org/10.1109/TAP.1975.1141115

Wheeler HA. Fundamental limitations of small antennas. IEEE Antennas Propagation. 1947; 35(12):1479-1484. https://doi.org/10.1109/TAP.1975.1141115

Chu LJ. Physical limitations of Omni-directional antennas. J Applied Physics. 1948; 19:1163-1175. https://doi.org/10.1063/1.1715038

Fujimoto K, Morishita H. Modern small antennas. Cambridge University press. New York, U K; 2013.

Singh H, Mandal S, Mandal SK, Karmakar A. Design of miniaturized meandered loop on-chip antenna with enhanced gain using shorted partially shield layer for communication at 9.45 GHz. IET Microwaves antennas propagation. 2019; 13(7):1009-1016. [Accessed 2022 Jan 28]. Available from: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-map.2018.5974

Mandal S, Karmakar A, Singh H, Mandal SK, Mahapatra R, Mal AK. A miniaturized CPW-fed on-chip UWB monopole antenna with band notch characteristic. Intern J Microwave Wireless technolog. 2020; 12(1):95-102. https://doi.org/10.1017/S1759078719000941

Karmakar A, Singh K. Si-RF Technology. Springer; 2019.

Nassar IT, Weller TM. An electrically small meandered line antenna with truncated ground plane. Radio and wireless symposium (RWS). 2011; 94-97. https://doi.org/10.1109/RWS.2011.5725417

Polívka M, Holub A. Electrically small loop antenna surrounded by a shell of concentric split loops. Proceedings Fourth Europ Conference Antennas Propagation. 2010; 1-3.

Biswas B, Ghatak R, Poddar DR. A Fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system. IEEE Transactions Antennas Propagation. 2017:65(11); 6126-6129. https://doi.org/10.1109/TAP.2017.2748361

Biswas B, Karmakar A. Chanda V. Hilbert curve inspired miniaturized MIMO antenna for wireless capsule endoscopy. AEU-International J Electro Communicat. 2021; 137. https://doi.org/10.1016/j.aeue.2021.153819

Biswas B, Karmakar A, Chandra V. Fractal Inspired Miniaturized Wideband Ingestible Antenna for Wireless Capsule Endoscopy. AEU-International J Electro Communicat. 2020; 120. https://doi.org/10.1016/j.aeue.2020.153192

Chapari A, Nezhad AZ, Firouzeh ZH. Analytical approach for compact shorting pin circular patch antenna. IET Microwaves, antennas and propagation. 2017; 11(11):1603-1608. https://doi.org/10.1049/iet-map.2017.0248

Booket R, Jafargholi A, Kamyab M, Eskandari H, Veysi M, Mousavi SM. A compact multi-band printed dipole antenna loaded with single-cell MTM. IET Microwaves Antennas Propagation. 2012 ; 6(1) :17-23. https://doi.org/10.1049/iet-map.2010.0545

Wang L, Zhang R, Zhao CL, Chen X, Fu G, Shi XW. A novel wide band miniaturized microstrip patch antenna by reactive loading. Progress electromagnetic Research C. 2018; 85(1):51-62. https://doi.org/10.2528/PIERC18051603

Mitra D, Ghosh B, Sarkhel A, Bhadra Chaudhuri SR. A miniaturized ring slot antenna design with enhanced radiation characteristics. IEEE Transactions Antennas Propagation. 2016; 64(1):300-305. https://doi.org/10.1109/TAP.2015.2496628

Patel RH, Desai A, Upadhyaya TK. An electrically small antenna using defected ground structure for RFID, GPS and IEEE 802.11 a/b /g /S applications. Progress Electromagnetic Research Letters. 2018; 75(1):75-81. https://doi.org/10.2528/PIERL18021901

Scardelletti MC, Ponchak GE, Merritt S, Minor JS, Zorman CA. Electrically small folded slot antenna utilizing capacitive loaded slot lines. IEEE Radio Wireless Symposium Orlando. 2008; 731-734. https://doi.org/10.1109/RWS.2008.4463596

Kim JH, Ahn CH. Small dual band slot antenna using capacitor loading. Microwave optical technology letter. 2017; 59(9):2126-2131. https://doi.org/10.1002/mop.30693

Pfeiffer C, Grbic A. A circuit model for electrically small antennas. IEEE Transaction Antennas propagation. 2012; 60(4):1671-1683. https://doi.org/10.1109/TAP.2012.2186232

Biswas B, Karmakar A. Electrical equivalent circuit modeling of various fractal inspired UWB antennas. Frequenz. 2021; 75(3-4): 109–116. https://doi.org/10.1515/freq-2020-0088

Simpson TL, Logan JC, Roway JW. Equivalent circuits for electrically small antennas using LS-Decomposition with the method of moments. IEEE Transaction Antennas propagation. 1975; 37(4):462-469. https://doi.org/10.1109/8.45109

Khalili FK, Haghshenas F, Shahriari A. Wearable dual-band antenna with harmonic suppression for application in medical communication systems. AEU - International Journal of Electronics and Communications. 2020;126. https://doi.org/10.1016/j.aeue.2020.153396

Khalili FK, Shahriari A, Haghshenas F. A simple method to simultaneously increase the gain and bandwidth of wearable antennas for application in medical/communications systems. Internat J Microwave Wireless Technologies. 2020; 13(4): 374-380. ttps://doi.org/10.1017/S1759078720001075

Mohamed EA, Omar FA, Ibrahim SM, Mahmoud AA, Sherif RZ. Wearable high gain low SAR antenna loaded with backed all-textile EBG for WBAN applications. IET Microw. Antennas Propag. 2020; 14(8): 791-799. https://doi.org/10.1049/iet-map.2019.1089

Khalili FK. A broadband all-textile wearable MIMO antenna for wireless telecommunication/medical applications. J Textile Institute. 2021; 112(12):2013-2020. https://doi.org/10.1080/00405000.2020.1862492

Shirvani P, Khalili FK, Mohammad HN. Design investigation of a dual-band wearable antenna for tele-monitoring applications. AEU - International J Electronics Communications. 2021; 138. https://doi.org/10.1016/j.aeue.2021.153840

Karimiyan-Mohammadabadi M, Dorostkar MA, Shokuohi F, Shanbeh M, Torkan A. Ultra-wideband textile antenna with circular polarization for GPS applications and wireless body area networks. J Industrial Textile. 2017; 46(8): 1684-1697. https://doi.org/10.1177%2F1528083716631326

Zhang YP, Sun M, Guo LH. On-Chip Antennas for 60-GHz Radios in Silicon Technology. IEEE Transactions Electron Devices. 2005; 52(7):1664-1668. https://doi.org/10.1109/TED.2005.850628

Yang W, MA K, Yeo KS, Lim WM. A 60GHz on-chip antenna in standard CMOS silicon Technology. IEEE Asia Pacific Conference on Circuits Systems. 2012; 252-255. https://doi.org/10.1109/APCCAS.2012.6419019

Biswas B, Karmakar A, Adhikar V. Liquid Crystal Polymer: Potential Bio-compatible Substrate for Antenna Application. Microwave Review. 2021; 21(1): 17-22. [Accessed 2022 Jan 28]. Available from: http://www.mtt-serbia.org.rs/files/MWR/MWR-Vol27No1/Vol27No1-2170-2-Biswas.pdf

Patel R, Upadhyaya T. An electrically small antenna for nearfield biomedical applications. Microw Opt Technol Lett. 2018; 60: 556– 561. https://doi.org/10.1002/mop.31007

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Karmakar A et al.