Abstract
The present paper deals with Bianchi type I two fluids cosmological model in scale covariant theory of gravitation.Matter fluid modeling observed matter and radiating fluid modeling cosmic microwave background radiation are taken as source. Exact Solutions of the field equations are obtained. Both interacting and non-interacting cases of two fluids are investigated. The exact solutions are obtained for constraints The energy densities are positive for the negative value of parametric constant in case of exponential model. Energy transfer from matter to radiation is observed in case of interacting fluid. Some physical parameter of the obtained model is discussed in detail.
References
Brans C, Dicke RH. Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review. 1961;124(3):925–35. https://doi.org/10.1103/physrev.124.925
Nordtvedt K Jr. Post-Newtonian Metric for a General Class of Scalar-Tensor Gravitational Theories and Observational Consequences. The Astrophysical Journal. 1970;161:1059. https://doi.org/10.1086/150607
Sáez D, Ballester VJ. A simple coupling with cosmological implications. Physics Letters A. 1986;113(9):467–70. https://doi.org/10.1016/0375-9601(86)90121-0
Canuto V, Adams PJ, Hsieh S-H, Tsiang E. Scale-covariant theory of gravitation and astrophysical applications. Physical Review D. 1977;16(6):1643–63. https://doi.org/10.1103/physrevd.16.1643
Beesham A. Bianchi type-I cosmological model in the scale covariant theory. Classical and Quantum Gravity. 1986;3(3):481–6. https://doi.org/10.1088/0264-9381/3/3/021
Venkateswarlu R, The African Rev Phys. 2013;8:35.
Reddy DRK, Patrudu BM, Venkateswarlu R. Exact bianchi type-II, VIII and IX cosmological models in scale-covariant theory of gravitation. Astrophysics and Space Science. 1993;204(1):155–60. https://doi.org/10.1007/bf00658101
Ram S, Verma MK, Zeyauddin M. Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation. Chinese Physics Letters. 2009;26(8):089802. https://doi.org/10.1088/0256-307x/26/8/089802
Zeyauddin M, Saha B. Bianchi type VI cosmological models: a Scale-Covariant study. Astrophysics and Space Science. 2012;343(1):445–50. https://doi.org/10.1007/s10509-012-1228-x
Katore SD, Sancheti MM, Hatkar SP. Magnetized anisotropic dark energy cosmological models in scale covariant theory of gravitation. International Journal of Modern Physics D. 2014;23(07):1450065. https://doi.org/10.1142/s0218271814500655
Fabbri R, Guidi I, Infrarasso G. Proc. second Marcel Grossmann meeting on general relativity, Ameterdam. North Hallond. 1992:889.
Amirhashchi H, Pradhan A, Zainuddin H. An Interacting and Non-interacting Two-Fluid Dark Energy Models in FRW Universe with Time Dependent Deceleration Parameter. Int J Theor Phys. 2011;50(11):3529–43. https://doi.org/10.1007/s10773-011-0861-4
Khalatnikov IM, Kamenshchik AYu, Starobinsky AA. Quasi-Isotropic Expansion for a Two-Fluid Cosmological Model Containing Radiation and String Gas. Journal of Experimental and Theoretical Physics. 2019;129(4):486–94. https://doi.org/10.1134/s1063776119100066
Coley AA, Dunn K. Two-fluid Bianchi VI(0) spacetimes. Astrophys J. 1990;348:26.
Pant DN, Oli S. Two-Fluid Bianchi Type II Cosmological Models. Astrophysics and Space Science. 2002;281(3):623–31. https://doi.org/10.1023/a:1015898219523
Reddy DRK, Anitha S, Umadevi S. Five dimensional minimally interacting holographic dark energy model in Brans–Dicke theory of gravitation. Astrophysics and Space Science. 2016;361(11). https://doi.org/10.1007/s10509-016-2938-2
Vishwakarma RG. A study of angular size-redshift relation for models in which Λ decays as the energy density. Classical and Quantum Gravity. 2000;17(18):3833–42. https://doi.org/10.1088/0264-9381/17/18/317
Oli S. Two-fluid cosmological models in a Bianchi type I space-times. Astrophysics and Space Science. 2008;314(1-3):95–103. https://doi.org/10.1007/s10509-008-9743-5
Letelier PS. Anisotropic fluids with two-perfect-fluid components. Physical Review D. 1980;22(4):807–13. https://doi.org/10.1103/physrevd.22.807
Bayin SŞ. Anisotropic fluid spheres in general relativity. Physical Review D. 1982;26(6):1262–74. https://doi.org/10.1103/physrevd.26.1262
Adhav KS, Borikar SM, Desale MS, Raut RB, Two-Fluid Cosmological Models in Bianchi Type-III Space-Time Elect. J Theor Phys 2011;25,319-26.
Berman MS. A special law of variation for Hubble’s parameter. Il Nuovo Cimento B Series 11. 1983;74(2):182–6. https://doi.org/10.1007/bf02721676
Singh CP, Kumar S. Bianchi type-ii cosmological models with constant deceleration parameter.. International Journal of Modern Physics D. 2006;15(03):419–38. https://doi.org/10.1142/s0218271806007754
Singh JK, Sharma NK. Bianchi Type-II Dark Energy Model in f(R,T) Gravity. Int J Theor Phys. 2013;53(4):1424–33. https://doi.org/10.1007/s10773-013-1939-y
Levitt LS. Nuovo Cimento. Lett., 1980;29,23.
Beesham A. Variable-G cosmology and creation. International Journal of Theoretical Physics. 1986;25(12):1295–8. https://doi.org/10.1007/bf00670415
Sisteró RF. Cosmology withG and Λ coupling scalars. General Relativity and Gravitation. 1991;23(11):1265–78. https://doi.org/10.1007/bf00756848
Amendola L, Campos GC, Rosenfeld R. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data. Physical Review D. 2007;75(8). https://doi.org/10.1103/physrevd.75.083506
Guo Z-K, Ohta N, Tsujikawa S. Probing the coupling between dark components of the universe. Physical Review D. 2007;76(2). https://doi.org/10.1103/physrevd.76.023508
Adhav KS, Dawande MV, Borikar SM, Bul J Phys 2011;38:371-79.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Hatkar SP et al