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ABSTRACT 

Bats are the reservoir host of the novel coronavirus/SARS-CoV-2. Bats are known to host 

hundreds of viruses, although they remain unharmed. Scientific evidence revealed that bats 

have various immunological specializations that enabled them to remain unaffected to 

coronaviruses. This manuscript highlights the aspects of bats’ defense mechanism against 

the viral load and their unique adaptability. Its ability to serve as propagating ground for 

viruses is favored by its extraordinary physiological traits and unique immune responses, 

including constitutive active interferons (IFNs), dampened inflammasome response, 

reduced DNA sensing mechanisms, and unique B and T cell components. Furthermore, bats 

have evolved with their efficient mode of oxidative phosphorylation, loss of PYHIN gene 

family, and positive selection for DNA damage checkpoints. These multiple mechanisms 

are detrimental to the viral co-existence in bats and spillover events. We have discussed 

future directions to enhance knowledge and understanding of bat-human interactions and 

the genetic diversity of bat-borne viruses, which will play a crucial role in preventing future 

outbreaks. 
 

Keywords: Bat, Bat-human Interactions, Coronaviruses, SARS-CoV-2, Co-existence, 

Defense mechanisms, Spillover. 

 

 

INTRODUCTION 

The novel coronavirus also known as SARS-CoV-2, is spherical or pleomorphic in shape 

with single-stranded RNA (29.8 kilobases in size) and a diameter of 80-160nm, having club-

shaped spike projections on its surface [1,2]. It is the seventh coronavirus that has infected 

humans [3,4]. The first coronavirus (HKU-229E) to infect humans was reported in 1966, 

followed by HCoV-OC43 in 1967, and the rest of the five coronaviruses was reported after 

2000[4–6]. The natural host of these seven coronaviruses has been identified as either bats 

or rodents. SARS-CoV-2 is believed to originate from BatCoV RaTG13 (GenBank: 

MN996532)[7]. Its closest relative was isolated from horseshoe bats [8]. This pervasive 

disease caused a great loss to human lives and economic burden worldwide that has 

triggered exhaustive discussions on its origin, etiology, and possible treatment strategies. 

The natural hosts of several viruses, including the novel coronavirus, are bats, which can 

host such lethal viruses without any symptomatic pathology[9]. Almost none of them is 

virulent to bats[10]. The metagenomic approaches have been used to identify and 

characterize viruses in the bats[11], which are publicly available through the PubMed 

database of the US National Library of Medicine. The data revealed that bats show an 

enormous diversity of viruses and even more viral infections per species than rodents [12]. 

Various classes of viruses have been identified in bats in several studies [13–15], including 

Japanese encephalitis virus, Nipah virus, MERS-CoV, SARS-CoV, Ebola virus, Influenza 

A virus, Hendra virus, Paramyxovirus, Chikungunya virus, Hantaan virus, Polyomavirus, 

Toscana virus, Morbillivirus and Saboya virus. A broader list of viruses present in different 

species of bats can be obtained from a study by Calisher et al. [14] and Hayman [16]. 

Various families of bats, belonging to the order Chiroptera of the class Mammalia, have 

several features that make them unique among mammals. Bats are present in all continents 

except Antarctica. Being nocturnal, bats seek shelter in natural or man-made structures such 
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as buildings, bridges, etc., where they may contact humans or their livestock[17]. Dense 

colonies of bats, along with their strong social behavior and feeding habits, may facilitate 

the transmission of viruses among themselves and to humans[17]. At the physiological 

level, bats possess abilities that stand them out from similar size mammals. Their metabolic 

rate is approximately three times higher than similar size mammals[18]. Their ability to 

control metabolism during flight is also extraordinary such as their metabolic rate enhanced 

by approx 35 times during the flight, compared to the basal metabolic rate[18]. As a result, 

their energy demand also reaches 1,200 calories per hour during flight[19]. Similarly, the 

heart rate ranges from 10 to more than 1,000 per minute[20]. This mammalian species also 

goes for hibernation. The immune responses may be suppressed due to low body 

temperature and slow metabolic rate, which leads to a delay in the clearance of viral load 

[13]. A coincidence has been found between the pregnancy in bats and the seroprevalence 

and seasonal spillover of several viruses[21]. Apart from that, their lifespan is around 40 

years, which exceeds all mammalian species of their size. The extended lifespan of bats also 

suggests that they must have very good disease tolerance ability, which primarily depends 

on the immune system. Altogether, these adaptations may explain the ability of bats to 

reduce but not eliminate viral load during infection [22]. Due to these unique abilities, bats 

are the reservoir of various viruses. This indicates that bats are inbuilt with a vivid array of 

immunological specifications, enabling a potent host immunological response against these 

viruses[23].  

Spillover events cause the viruses to move to the new host as observed with SARS-CoV-2. 

It is also expected that soon similar events might happen and cause the next pandemic. 

Therefore, it is important to understand how bat remains unaffected from viruses or virus-

mediated pathogenesis. More importantly, bats do not exhibit excessive production of 

cytokines as observed in people suffering from COVID-19, indicating a unique mechanism 

that regulates viral number and pathology. Deciphering the molecular mechanism of viral 

tolerance in bats will also pave the path to identify chemical molecules or natural 

compounds as therapeutic agents to control this novel coronavirus. The manuscript 

compiled the current understandings of the antiviral response of bats. We focused on the 

immunological perspective of bats antiviral response and highlighted the major players 

involved in this phenomenon. We will explore the immunological perspective of bats’ 

resistance to these viruses in the subsequent segments. 

 
BATS INNATE IMMUNOLOGICAL SPECIALIZATIONS 

Some of the important aspects of bats’ immune system can be understood in terms of innate 

and adaptive components, which act differently in terms of cells involved and response 

strategies as appropriately required. Some unique anti-inflammatory responses in bats may 

neutralize pro-inflammatory stimuli, which might have provided longevity and tolerance to 

viral infection. These abilities of bats to prevent excess activation of their immune responses 

might have also contributed to their potential of viral tolerance, as described below. 

Bats have constitutive active IFNs 

The interaction of any host with the infectious agents triggers a wide array of immunological 

responses, including the innate response. Its major components include morphological, 

anatomical, physiological barriers and different types of leukocytes and cytokines, which 

sense and respond to infections at the earliest. Interferons (IFNs) are produced and secreted 

by the host viral infected cells, which leads to suppression of viral propagation inside the 

host. Several antiviral factors have been identified among different bat species, including the 

black flying fox (Pteropus Alecto), which are highly conserved in vertebrates, including 

pattern recognition receptors (PRRs), IFNs, their receptors, as well as the interferon-

stimulated genes (ISGs) [24]. IFNα and IFNβ (Type I), and IFN λ(Type III) have been 

detected in cells of P. Alecto bats [25]. Bats like M. Lucifugus and P. Vampyrus have 61 

ORFs for type I IFNs, which have been further split into sub-groups including IFN-α, IFN-

β, IFN-k, IFN-ω and IFN-δ[26]. Studies show that the Hendra and Palau virus infection of 

kidney cells (PaKiT03) in P. Alecto fails to induce the expression of IFNα, suggesting that 

the basal level of IFNα is already high in bat cells [27]. Such a phenomenon is not observed 

in other species, indicating the unique immune response of bats to the viruses that enable 

their coexistence with viruses [27]. Another study revealed that IFN-ϒ in P. Alecto has been 

conserved and showed functional similarity with other mammals [28]. One more 

determinant of the IFN-dependent immune response to viruses is interferon regulatory factor 

7 (IRF7), considered a master regulator [29]. The IRF7 is distributed in many cells, including 

immune cells of bats [29], assuming that broader distribution of IRF7 will facilitate antiviral 

response by activating IFN. Coronaviruses are restricted to gastrointestinal tracts in bats, 

whereas these viruses invade respiratory tracts in humans and others [30]. Due to this, 

coronaviruses might be unable to stimulate broad immune responses in bats. Furthermore, 
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the TNFα promoter of big brown bat (Eptesicus fuscus) has two NFkB binding sites, whereas 

the human counterpart has one more, which may cause low TNFα promoter activity [31]. 

Altogether, the constitutively active IFNs provide a unique perspective to the bat's immune 

system.  

Toll-like receptors (TLRs) of bats have altered ligand binding affinities 

Upon infection with RNA viruses, pattern recognition receptors (PRRs) of the host cell 

recognize pathogen-associated molecular patterns (PAMPS). Numerous types of PRRs have 

been observed, including the Toll-like receptor (TLR) family, which activates IFN pathways 

[32][33]. The intracellular TLRs can recognize several ligands, including double-stranded 

RNA and single-stranded RNA [34]. These TLRs are localized in several intracellular 

organelles, and they recognize PAMPs. Subsequently, upon activation, the TLRs transduce 

signals with their Toll/interleukin-1 receptor (TIR) domain. High expression of TLR3 in bat 

liver instead of dendritic cells is a notable point [35,36], and TLR13 can be considered a 

virus-sensing TLR [35,37]. Also, the number and location of leucine-rich repeats vary 

among bat species, possibly affecting the ligand-binding affinities [32]. It may indicate 

toward co-evolution of viruses with bats [32]. In bats, TLRs have unique mutations in ligand-

binding sites, altering their function and properties [38]. 

Reduced inflammasome and DNA sensing mechanisms 

Viral infections in mammals cause several responses, including inflammation induced by 

the inflammasome sensor, the NLR family pyrin domain with 3 (NLRP3). NLRP3 

recognizes infections caused by bacteria or viruses and senses the different stress forms, 

including mitochondrial or oxidative stress. One of the studies revealed the role of NLRP3 

in activating immune response upon infection with rabies and influenza viruses [39]. 

Furthermore, the comparative study between human, mouse, and bat counterparts show that 

the bat exhibits dampened activation of NLRP3 [39], primarily due to the reduced functional 

capacity of bat NLRP3. Consequently, the bats tolerate high viral doses inside them because 

of reduced inflammasome response, and they remain unharmed. Hence, the bat remains 

tolerant to these viruses; however, upon spillover to other host species, the pathogenesis can 

be observed, and they are often lethal.  

Intracellular and foreign DNA is sensed by immune sensors that include PYHIN gene family 

members and subsequently trigger the immune responses [40,41]. It includes five proteins – 

AIM2, IFI16, MNDA, PYHIN1, and POP3 [42]. A study conducted on ten different bats 

species revealed a complete loss of PHYIN locus in all of them [43]. Consequently, bats can 

limit excessive inflammatory activation by sensing self DNA from DNA damage and 

thereby attenuate type I interferon induction. [43]. The stimulator of interferon genes 

(STING) is a well-established molecule involved in the inflammasome response [44,45]. 

STING is an ER-resident transmembrane protein with cytosolic C-terminal domain (CTD) 

[44,46]. STING also stimulates a response to nuclei acid ligands, including dsDNA 

[45][47,48]. After interaction with MAVS and RIG-I, STING acts as a potential antiviral 

effector by producing type I IFNs without affecting the TLR pathway [49]. Translating viral 

RNAs and B-form DNAs may be detected by STING, and then antiviral immunity is induced 

via TBK1 [49]. An amino acid substitution (serine at S538) has been reported in the STING 

protein of bats, and studies suggest that this mutation might dampen STING-dependent IFN 

activation [25]. It can inhibit viral pathogens, possibly by restricting its transcription, 

independent of viral immune sensing and induction of IFN [50]. Being a sensor of viral 

dsRNA motifs, RIG-I induces the expression of type I IFNs [51]. The SARS-CoV encodes 

a protease that inhibits IRF3 activation through deubiquitinating RIG-I and other proteins 

[52]. The M protein also interacts with RIG-I to prevent the induction of IFN [53]. Bat RIG-

1 has altered sensing mechanisms [54]. Altogether, the loss of the PYHIN gene family 

substantially reduces the DNA sensing mechanism, which had provided an adaptation to 

minimize the over expression of immune responses like inflammation [55,56]. 

Unique role of IRF and Bat Mx genes 

IFN regulatory factors(IRFs) have been recognized as an important modulator of antiviral 

responses and cytokines like IFNs and others[57]. In mammals, cells respond earliest to viral 

infections through transcription of IFN genes. After that, IFN induces proteins including 

IRF7 through phosphorylation, causing its activation that subsequently induces delayed 

IFNs. IFNs, after being synthesized in cells infected by viruses,  bind to their receptors and 

induce target gene expression leading to antiviral responses of cells[58]. In mammals,  IRF7 

is considered a  master regulator of IFNs and part of the innate defense mechanism [29]. It 

has been preferentially expressed in lymphoid cells. Still, it has been broadly distributed in 

the tissues of bats, and this might be helpful in rapidly activating the IFN response in these 

tissues compared to other mammals[29,59,60]. This may be a reason for the coexistence of 

viruses with bats without any clinical signs of disease[29].  
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Myxovirus resistance(Mx) proteins are found in most vertebrates and have been correlated 

with antiviral activity[61]. They inhibit negative-stranded RNA and other viruses by 

recognizing their nucleoproteins or nucleocapsid proteins[61]. The expression of Mx genes 

is controlled by Type-I and type-III IFNs[62,63]. Several pieces of evidence of co-evolution 

between viruses and Mx proteins with antiviral activities[61]. A study has demonstrated that 

bat Mx1 can efficiently inhibit several viruses. It has been speculated that IFN-induced Mx 

proteins in bats may be an antiviral factor coevolved with bat-borne viruses playing a 

significant role in restricting viral responses by suppressing viral polymerase activity[64].  

Overall, the inherent defense mechanism of a bat, described above, has been summarized in 

figure 1. Based on well-established studies, scientists have characterized the innate immune 

response of bats against viruses [65–67]. One major component of the innate response of 

bats is triggered by the overexpression of oxidative phosphorylation (OXPHOS), which 

generates excessive reactive oxygen species (ROS). ROS is extremely harmful to cells 

because it causes oxidative DNA damage. However, the dampened STING in bats reduces 

the sensing of damaged DNA, leading to suppressed inflammasome pathways that contribute 

to weaker immune responses or more tolerance to viruses. More importantly, this damage is 

counterbalanced by overexpression of proteins involved in the DNA damage checkpoint, as 

shown in figure 1. The viral nucleic acids are detected by various classes of host pattern-

recognition receptors (PRRs), including RIG-I-like receptors (RLRs), TLRs, cyclic GMP-

AMP synthase (cGAS), etc. The RIG-1 and Melanoma Differentiation-Associated protein 5 

(MDA-5) are cytosolic PRRs that recognize viral RNA, with RIG-I recognizing short 

dsRNA and MDA5 recognizing long dsRNA and inducing the expression of type I 

interferons (IFNs). The intracellular TLRs can recognize RNA and DNA and induce 

downstream signaling via the TIR-domain-containing adapter-inducing interferon-β (TRIF) 

pathway. These molecules activate several signaling, which leads to the upregulation of 

interferons, as shown in figure 1. Furthermore, the higher-constraints of interferon-

stimulated genes (ISGs) and downstream effectors keep the cells prepared to cope with the 

viral load.  

 

 
Figure 1: Proposed innate immune response of bat against viruses. The ROS generated by 

overexpression of OXPHOS leads to oxidative DNA damage, which is counterbalanced by 

overexpression of DNA damage checkpoint proteins, like ATM, in bats. Various host 

PRRs, such as RIG-I, TLRs, etc., detect viral nucleic acids. The Stimulator of interferon 

genes (STING) interacts with mitochondrial antiviral signaling (MAVS) and RIG-I. It 

exerts a significant immune response against viruses by producing type I IFNs without 

affecting TLR.TLR3 activates Interferon regulatory factors 7 (IRF7) via the adaptor 

molecule TRIF, which forms a complex with TANK-binding kinase 1 (TBK1), an inhibitor 

of the nuclear factor-κB kinase(IKK), and IRF7. Prior to nuclear translocation and 

induction of Type-I or Type-III IFNs, phosphorylated IRF7 forms a homodimer or a 

heterodimer with IRF3. The Janus Kinase (JAK) family members JAK-1 and tyrosine-

protein kinase 2 (TYK-2) phosphorylate two signal transducer and activator of 

transcription (STAT) proteins, STAT-1 and STAT-2. They form a heterodimer that recruits 

IRF-9 to form the IFN stimulated gene factor 3 (ISGF-3) complex, which moves inside the 

nucleus and interacts with IFN-stimulated response elements (ISRE). ISRE has been 
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observed in the promoter of IFN-stimulated genes (ISG). Furthermore, IRF7 is a master 

regulator and is constitutively expressed in excess in bats. Upward and downward arrows 

indicate upregulation and downregulation of the molecules in bats. Different sensors and 

mediators are shown in ovals. 

 

BATS ADAPTIVE/HUMORAL IMMUNE SYSTEM COMPONENTS 

Persistent infection or incomplete eradication of microbial load triggers the adaptive immune 

response. This response depends mainly on the activities of β and T lymphocytes, which 

have variable strategies to respond and reduce viral loads. The bats' blood, spleen, and bone 

marrow have proportions of β T and NK cells different from other mammals [68]. The major 

components of the adaptive immune response of bats are explained below. 

Bats β cell components 

Bats exhibit adaptive responses to viral infections, including IgE, IgG, IgM, IgA, cytokines, 

etc. [69]. Hollow bones of bats do not have bone marrow, affecting the production of β cells, 

due to which they may be able to carry a heavy viral load without illness [70]. But the 

formation of βcells may be increased in other places, like bone marrow of legs and pelvis of 

bats [70]. Antibodies constitute a major part of the humoral immune response, which helps 

capture and neutralize viruses and other pathogenic particles [71]. Antibodies bind to viral 

particles and block infections to the host cell, whereas T cells recognize and destroy the cells 

infected with viruses [72]. It has been observed that the bats have a rich repertoire of IgG 

isotypes along with copy numbers [73,74]. For example, Carolliaper Spicillata has a single 

IgG isotype, while Eptesicus fuscus has two, and Myotis lucifugus has five isotypes [75]. In 

M. Lucifugus, the VDJH locus shows high diversity, but little evidence of somatic 

hypermutation has been reported. Furthermore, the researchers have also detected the 

transcripts of IgM, IgE, and IgA in bats [68]. Although the number of white blood cells 

(WBCs) decreases with age in greater sac-winged bats (Saccopteryx bilineata), IgG antibody 

levels are found to be higher in older bats [28]. 

Bats T cell components 

Among T cells, both CD4 and CD8 types are involved in antiviral immunity, but each of 

them recognize peptides derived from viral antigens bound to different MHC proteins [72]. 

Since viruses replicate within and spread directly between cells, T cell functioning is more 

vital for the resolution of the infection [72]. The presence of leucocytes like macrophages, 

β, and T cells has been confirmed in the spleen and lymph nodes of Indian fruit bats Pteropus 

giganteus. The number of T cells has been reported to be more than β cells in P. Alecto and 

E. spelaea [76] [68]. This highlights that bats may have a strong T-cell response compared 

to humoral response or the steady immune state, or the presence of viruses [77]. Bats have a 

CD4 to CD8 T cell ratio of 2:1 as opposed to 1:2 in humans and mouse bone marrow [78], 

which may be due to infection, inflammation, and/or autoimmunity [79–81]. The T cell 

coreceptor, CD4, and CD3+ have been identified in bats [69] [77]. The production of T 

lymphocyte-derived cytokine in bats is delayed compared to mice [28], indicating a unique 

humoral immune response of bats. A study on R. aegyptiacus CD4 cDNA sequencing 

revealed similarities of CD4 with cats and dogs compared to that of humans and mice. 

Unique changes have been observed in bat CD4, including the addition of 18-amino acid 

and lack of a cysteine compared to humans, suggesting structural differences in bat CD4 

[82]. 

Contracted MHC genes and diverse APOBEC proteins 

Class I and II major histocompatibility complex (MHC) proteins constitute the fundamental 

components of acquired immunity. [83]. MHCs are involved in the presentation of the 

peptide from the processing of foreign agents, which are subsequently recognized by T cells. 

Cytotoxic CD8+ T cells recognize class I MHC peptides on the surface of nucleated cells,  

while the MHC II peptides, presented by antigen-presenting cells (APCs), like dendritic cells 

(DCs), macrophages, or β cells, lead to activation of CD4+ T cells [83]. Apolipoprotein B 

editing complex (APOBEC) restricts the replication of retroviruses by deamination of 

cytosine residues of viral cDNA[84][85,86]. In comparison to other mammals, Pteropid bats 

contain contracted MHC I region, fewer IFN genes but a huge quantity of diversified group 

of APOBEC proteins, indicating its vast antiviral activity[87,88]. It is assumed that 

APOBEC diversification might have occurred in bats, possibly to counteract the effect of 

different viruses [86]. 

Overall, the adaptive immune response of bats for viruses is summarized in figure 2. Upon 

encounter with viral antigens, the β cells are activated and differentiate into two distinct cell 

types, plasma and memory cells. The β cell produces antibodies that bind to viral particles, 

block further infections, and neutralize the virus. Another component of adaptive immunity 

is the response of T cells. They specifically recognize and destroy cells infected with viruses. 

The antigen-presenting cells (APCs) process viral proteins and present them via their MHC 
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class I/II peptides, which are recognized by specific CD8 cytotoxic T lymphocyte (CTLs) 

and dendritic cells (DCS), respectively. Finally, activated CTLs and DCs induce apoptosis 

and phagocytosis of viral-infected cells. 

 

 
Figure 2: Adaptive immune response in bats. Encountering antigens is required for 

activation of βcells, which differentiate into plasma and memory cells after being 

activated.Antibodies bind to viral particles and block infections to the host cell. T cells 

recognize and destroy the cells infected with viruses. Specific CD8 CTLs get activated 

after recognizing antigens bound to MHC class I on professional antigen-presenting cells 

(APCs) and then proliferate and differentiate into effectors, which enter the efferent lymph 

and bloodstream reach other locations. Different immune cells are shown in ovals. 

 

OXIDATIVE PHOSPHORYLATION (OXPHOS) RATE ARE HIGHER IN BATS   

Amongst mammals, only bats are equipped with the ability of powered flight. It consumes a 

lot of energy to fly, so their metabolic rates have been immensely increased. A comparative 

study has confirmed that a relatively higher rate of positive selection has been observed in 

mitogenome encoded OXPHOS genes; however, five-fold fewer values were obtained for 

nuclear-encoded non-respiratory genes [89]. This natural selection of OXPHOS genes led to 

an increased rate of oxidative phosphorylation to generate ATP, but this oxidative process 

comes at a price. OXPHOS also generates precarious free radicals like ROS. These ROS 

cause DNA damage that can lead to cancer and contribute to aging; however, bats are long-

lived. In bats, the OXPHOS-related genes of the mitochondrial genome evolved particularly 

rapidly, faster than genes in the nuclear genome. It has been found that the genes associated 

with the OXPHOS pathway in micro-and megabat species have been enriched [25]. 

 

BATS ARE BETTER AT DEALING WITH DNA DAMAGE 

The bat has a unique ability to enhance its basal metabolic rate during its flight. The detailed 

analysis of the OXPHOS of bats revealed that their overall energy metabolism is 

unregulated, supporting ATP production during flight adaptation. Although the positive 

selection of OXPHOS helps bats survive longer flights by supplying a sufficient amount of 

ATP, it is also responsible for generating damaging molecules like ROS. These ROS are 

responsible for intracellular damages, including oxidative DNA damage. To cope with such 

damages, bats have evolved so that they have enhanced the ability of DNA repair. Several 

bat species, including Pteropus electo and M. davidii, have shown a rapid evolution of genes 

involved in DNA repair [2,25]. In these bats, a positive selection of DNA damage checkpoint 

pathway has been observed along with the required components of the innate immune 

system, suggesting that flight adaptations regulate bat immunity [25]. Bats can repair 

excessive DNA damages and prevent their body from further damages. 

 

INSIGHTS ON VIRUS SPILLOVER EVENTS 

The spillover of viruses from bats to humans is directly linked to an increase in the frequency 

of their interactions among them. These interactions are caused due to a reduction in the bat 

habitats due to anthropogenic activities leading to an alteration in the host-pathogen 
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relationships [90,91]. Furthermore, it has been demonstrated that viral transmission from 

bats is directly associated with their eating behavior. For example, the fruit bats 

contaminated partially eaten fruits are consumed by other animals, which get easily infected 

[92]. Spillover events are rare phenomena in nature and comprise sequential processes of 

contributing factors as reviewed by Subudhi et al. [67]. One such example has been elegantly 

shown by Plowright et al. [10] about the series of events leading to spillover of Hendra virus 

from bat to horses. These hierarchical events include the reservoir hosts, infection of 

reservoir hosts; shedding of viruses from reservoir hosts; survival of virus outside reservoir 

host; accessibility of virus to the recipient host; and the susceptibility of recipient hosts to 

the virus infection. Apart from these, several additional factors are needed to prevent the 

successful infection of the recipient host. The health status of the recipient host, previous 

exposure to the virus, environmental conditions, immune system of the host, and genetics 

plays a crucial role in establishing infection during spillover event[93]. The hypothesis 

proposed by Plowright et al. [10] highlights that the virus reactivates inside bats from time 

to time in response to different stimuli in bats, which probably increases the potential of viral 

shedding responsible for spillover. Furthermore, various factors contribute to the co-

existence of bats and viruses, including- metabolic adaptations, constitutively active IFN, 

dampened inflammasomes responses, and several others, as shown in figure 3. 

Moreover, the genetics of the bat allows the suppression of its immune response that allows 

the virus to significantly increase the viral titer leading to continuous and recurrent virus 

shedding. Such observations have been reported in pteropid bats, in which the bat's unique 

immune system causes henipavirus shedding  [94]. Similarly, Sohayati et al. [94]reported 

that waning antibody levels and different stresses led to a recrudescence of NiV infection in 

bats. Gerow et al. [95] stated that the reactivation of viruses in brown bats occurred even 

after their arousal from hibernation. 

Altogether, viral shedding is also a contributor to successful spillover events, which is highly 

dependent on the reactivation of the virus [96]. With the recent advances in our 

understanding of bat immunology, it is conceivable that such information will be useful for 

preventing viral shedding and subsequent infections in humans. 

 

 
Figure 3: Summary of contributing factors that might lead to viral spillover from bat to 

recipient host. 

 

CONCLUSIONS AND FUTURE PERSPECTIVE 

We have summarized the mounting evidence suggesting the mechanisms by which bats limit 

viral infected diseases, rather enabling them to co-exist. Due to delayed /reduced immune 

response in humans, extensive immunopathogenesis has been observed due to viral 

infection; however, the same virus does not cause any problem in bats. Therefore, to tackle 

the spillover of viruses from bats to humans, it is necessary to understand the biology of 

host-pathogen interactions in context with bat viruses. One of the interesting progress 

undertaken is the ongoing genome sequencing of all species of bats as Bat1K project[97]. It 

is expected that upon completion of the Bat1K project, the researchers will understand the 

bat biology in detail and help them elucidate bat-pathogen and host/ recipient species 

interactions. Furthermore, the available data indicates that the viruses present in the bats are 

not geographically even [16], indicating the possible role of phylogeographic processes, 

which require validation of studies in the future. The stable bat cell lines should be developed 

to accelerate in vitro studies on bat cells. Such cell lines could be used to perform CRISPR- 

mediated screening experiments genome-wide studies, including transcriptomics and 

proteomics.   Few cell lines have been obtained from the pteropid bat, P. alecto[98], and few 
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assays have been conducted [99]. Recently, a genome-wide transcriptome study on R. 

aegyptiacus bat has been conducted to identify several unique features [100]. Similar studies 

and screens might be performed in other bats to better understand the host-pathogen 

interactions, making the cell lines study more relevant. Such studies can be translated to 

organoids derived from bat cell lines to understand immune system adaptations' molecular 

basis. The nature of the antibody response to viral infection by a bat is relatively unknown. 

The mechanism of dampened antiviral response in a bat is another interesting direction for 

researchers to work soon. Altogether, several key mysteries remain unresolved. Therefore, 

humankind must enhance knowledge and understanding of bat and virus coexistence to 

prevent future outbreaks. 

Several strategies have been suggested to control this pandemic. The identification and 

successful clinical trial of oral therapeutics are helping clinicians manage people suffering 

from coronavirus. Highly collaborative and intensive efforts are obligatory to further 

strengthen our doctors with better medicines and treatment regimes. Furthermore, the 

implementation of non-pharmacological interventions, including "proning" and respiratory 

exercises, positively impacts the survivability of COVID-19 patients. The use of booster 

vaccines to recharge waning immunity is also required, and many countries have already 

started it. 

Furthermore, it seems mandatory to intensify global vaccination efforts in low and middle-

income countries because it will substantially decrease the emanation of new coronavirus 

divergence. Vaccine equity in all countries is required to reduce the spread and possible 

elimination. The regular surveillance of a new cluster of cases and quickly identifying the 

causative variant is needed to control the spread of the virus. It is also necessary to create 

multivalent vaccines that can be quickly modified to incorporate changes that occurred in 

the variants to maintain overall vaccine efficacy. Another important area of concern is to 

develop the healthcare infrastructure to handle a large surge in cases. More importantly, the 

general public has to maintain proper hand hygiene, social distancing norms, use of masks, 

and avoid unnecessary gathering/ super-spreader events to reduce the spread of this virus. 

The experience gained from the previous waves of COVID-19 indicates that without 

international coordination, it is difficult to control the emergence of new variants and spread 

this virus. Altogether, the information gained from previous waves of COVID-19 suggests 

that a coherent collaboration is of utmost necessity between the governments, scientists, 

clinicians, epidemiologists, economists, and sociologists to control this virus with minimal 

economic and social impact on human society. 
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