RESEARCH ARTICLE

Male Infertility – An Analysis in a Low Resource Setting

Deepti Jain a, Suvrit Jain b

Abstract:

Purpose: The prevalence of male subfertility is increasing among couples seeking fecundity in recent years. A prospective study was carried out in a gynaecological outpatient, to study the benefit of a low cost algorithm for determining the etiology of infertility in adult males with suboptimal semen parameters. Materials and Methods: Thirty one males, who had a sperm concentration less than 15 million/ml were considered in the study. The cost of diagnosis was kept low; not exceeding 150 US dollars. A similar algorithm of investigation was followed for all patients and medical treatment provided as per treatment guidelines. Results: A confirmed etiology could be determined in 7 patients, while a probable diagnosis was suggested in 21 males. Endocrinometabolic causes were the most important etiological factors in our Indian population. Lifestyle diseases like obesity, insulin resistance were prominently found in the suspected acquired hypogonadotropic hypogonadism group. Medical treatment was provided to 24 subfertile males, and 64% showed good improvement in seminal count, after 3 months of therapy. Only selected patients were referred to higher tertiary centres, for specific interventions like sperm retrieval techniques, intracytoplasmic sperm injection of the female partner. Conclusion: This study proves that male subfertility can be managed in a low resource centre, with the help of a simple algorithm, with ease and proficiency, thereby reducing economic burden on these couples. Also, this analysis has helped us to ascertain the relative propensity of etiological factors among adult males with infertility in North India in the present time.

Keywords: Luteinising Hormone (LH), Ultrasonography (USG), Follicle stimulating hormone (FSH), Serum Total Testosterone (TT), Testicular Microlithiasis (TM)

Correspondence: Dr Deepti Jain, Chhotu Ram Hospital,10,11 Huda Complex Rohtak, Haryana, India.
Email: deeptijain62@gmail.com

INTRODUCTION

Male infertility remains a scary riddle for the obgyn specialist. However in a developing country all patients do not have access to advanced infertility centres, because of the distance and expense involved . The true incidence of male infertility is difficult to determine, because of wide variation in reports from different countries. However, roughly a suboptimal semen result has been found in about 30% to 50% couples. (1) This study was performed to apply a simple, cost effective algorithm to subfertile males with oligospermia (WHO criteria 2010) to establish the etiology and determine the usefulness of the plan for diagnosis and improvement in sperm count. [2]

MATERIALS AND METHODS

Inclusion criteria included, men in the age group of 20-40 years of age, with seminal count less than 15 million/ml, who desired fertility and were willing to come for follow up, for at least 3 months. Exclusion criteria were applied to men above 40 years of age, those who had ejaculatory problems, could not provide semen sample by masturbation, or had anatomical anomalies with the penis. This study was performed in low resource, semi urban setting, keeping the expense for etiological diagnosis of infertility between 100-150 USD. Patients were drawn from the outpatient department of a single gynaecologist. Semen analysis was done during investigation of the infertile couple and men with a semen count less than 15 million, were enrolled for the study. Only seminal count, i.e. one parameter of semen analysis was considered for analysis and further improvement determination.

The algorithm followed for ascertaining the cause of oligo/azoospermia consisted of the following steps :

- History
- General examination

Mediterranean Journals
Integrative Journal of Medical Sciences
2021, Volume 8, ID 418
DOI: 10.15342/ijms.2021.418
Local scrotal examination
- Ultrasonography of scrotum
- Blood sugar testing
- Endocrinial assays
- Karyotype

A careful history was taken, which included the age of puberty onset, occurrence of infections like mumps and tuberculosis, hernioplasty, history of crypto-orchidism and orchidopexy, occupational heat exposure, tobacco consumption, alcohol or drug abuse and trauma to genitalia.

On examination the patient’s height, weight, body mass index, blood pressure, features of virilization and other signs of medical illness were recorded.

A local scrotal examination was performed, but ultrasound of scrotum was considered as final, for uniformity.

Endocrinial assays included blood sugar, luteinising hormone (LH), follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), serum prolactin, and total testosterone level. Serum estradiol determination was performed only in men who were overweight or obese. Karyotype was offered to all the patients; but agreed by some, because of the high cost involved.

A total of 31 adult males were analysed and followed up for a minimum of 3 months. A careful diagnosis was attempted and medical treatment was provided to 24 men. Semen analysis was performed at 3 months and some patients were followed up for 9 months.

RESULTS
The results in the present study, were determined after analysis of certain parameters.

History
A careful history yielded fruitful results.

Table 1: Table showing number of patients with significant factors in history.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperthermia - occupational heat exposure</td>
<td>2</td>
</tr>
<tr>
<td>(locomotive driving, Cooking)</td>
<td></td>
</tr>
<tr>
<td>Delayed age of puberty</td>
<td>3</td>
</tr>
<tr>
<td>Tuberculous Lymphadenitis</td>
<td>1</td>
</tr>
<tr>
<td>Heavy smoking /tobacco</td>
<td>4</td>
</tr>
<tr>
<td>Alcoholism (Daily heavy alcohol intake)</td>
<td>1</td>
</tr>
<tr>
<td>Delayed Orchidopexy</td>
<td>1</td>
</tr>
<tr>
<td>Parental Testosterone exposure/ Steroid intake</td>
<td>2</td>
</tr>
<tr>
<td>Mumps with orchitis</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2: Table showing number of patients with abnormalities on ultrasound.

<table>
<thead>
<tr>
<th>Scrotal abnormality</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suboptimal Testicular size</td>
<td>19</td>
</tr>
<tr>
<td>Varicocele</td>
<td>11</td>
</tr>
<tr>
<td>Microlithiasis</td>
<td>1</td>
</tr>
</tbody>
</table>

Endocrinial Analysis
Endocrinometabolic causes were found in 21 patients and 13 males were suspected to have hypogonadotrophic hypoandrogenemia. One patient had congenital...
hypogonadotropic hypogonadism, where magnetic resonance imaging was done and no intracranial space occupying lesion was found. Twelve patients had acquired suspected hypoandrogenemia due to metabolic conditions, like diabetes and elevated body mass index. Hypothyroidism was also present in two of these patients with acquired hypoandrogenemia. Magnetic resonance imaging was offered to all these patients, but patients ignored imaging, because of the expense involved, and were considered for trial of therapy after counselling. Hypergonadotropic hypogonadism was found in 5 patients with low testosterone levels. These, 5 males had low total testosterone levels, with both raised LH and FSH, and hence treated as primary testicular infertility. One patient had low serum total testosterone levels, with raised LH, but normal FSH, and was thus considered as abnormal spermatogenesis. Mild hyperprolactinemia was found in two men, who refused imaging of pituitary gland, but insisted for medical therapy.

Cytogenetics
Karyotype study was offered to all patients, however only 18 patients got it done; while the rest declined because of the high cost involved. Sixteen patients with subfertility in this study were found to have normal karyotype (XY). Two patients with hypergonadotropic hypogonadism were found to have an abnormal karyotype i.e. Klinefelter syndrome (XXY). Both males with Klinefelter syndrome were azospermic, had very small testes, with testicular volume less than 2cc, and a total testosterone assay was less than 130 ng/ml.

Diagnosis
A diagnosis for cause of infertility was attempted after history, examination, ultrasonography, endocrinal assay determination and cytogenetics. The confirmed etiology for oligo-azospermia could be determined in 7 males, while a probable entity was suggested in 21 patients. In 3 subfertile males in this study, the cause remained uncertain. [Fig. 2]
Table 3: Table showing types of medical therapy given and improvement in patients.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number of patients offered treatment</th>
<th>Medical Treatment</th>
<th>Number of patients improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected Hypogonadotropic hypogonadism- acquired</td>
<td>12</td>
<td>Weight reduction, Anastrazole, Thyroxine, Metformin where required</td>
<td>6</td>
</tr>
<tr>
<td>Congenital Hypogonadotropic hypogonadism</td>
<td>1</td>
<td>Gonadotrophins</td>
<td>0</td>
</tr>
<tr>
<td>Hyperprolactinemia</td>
<td>2</td>
<td>Cabergoline</td>
<td>2</td>
</tr>
<tr>
<td>Oxidative damage-probable</td>
<td>5</td>
<td>Antioxidant</td>
<td>4</td>
</tr>
<tr>
<td>Abnormal spermatogenesis</td>
<td>1</td>
<td>Antioxidant</td>
<td>1</td>
</tr>
<tr>
<td>Uncertain diagnosis</td>
<td>3</td>
<td>Antioxidant</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 4.
DISCUSSION
Acquired hypogonadotropic hypoandrogenemia constituted the largest category in the subfertile males analysed in this study, and was found in 12 of 31 i.e. 38.70% subjects. Elevated body mass index (overweight/obesity) was found in 9 men in this group. Diabetes mellitus, hypothyroidism, dyslipidemia were found in several men which were treated accordingly. Eight patients out of 9 with acquired hypogonadoniaemia with raised body mass index, also had disturbed testosterone/estradiol ratio, which was found to be less than 10. An aromatase inhibitor, anastrozole in a dose of 1 mg daily was also administered to them for 3 months. A monthly total testosterone and estradiol analysis was done. At the end of 3 months the testosterone/estradiol ratio was reversed in 6 of the 8 patients. There was an increase in the seminal count in all these 6 patients, hence anastrozole was observed to be effective in 74.6% males. In a study done earlier, 32 subfertile men with BMI≥25kg/m² were treated with anastrozole and a significant improvement was seen in sperm concentration after 5 months of therapy. [3]

In one patient of acquired hypogonadoniaemia with oligospermia, careful history taking revealed, that he was taking testosterone injections for erectile dysfunction. This was interesting and should always be considered while interviewing subfertile males. This patient was treated with antioxidant and clomiphene citrate. The sperm concentration improved at 3 months and there was conception in the female partner as well. Two men had hyperprolactinemia, who were treated with Cabergoline and showed marked improvement in seminal count.

Congenital hypogonadotropic hypogonadism was observed in one patient where low total testosterone level (28 ng/ml) was associated with LH and FSH <1miu/ml. In this patient on magnetic resonance imaging, no intracranial or pituitary focal lesion was found. This male did not have an olfactory abnormality and cytogenetics was normal (XY karyotype). In this patient, puberty had been achieved earlier and had now come for management of azospermia. He was therefore considered for treatment with gonadotrophins, to improve semen parameters. Treatment modalities for Congenital Hypogonadotropic Hypogonadism for inducing spermatogenesis.

- HCG
- FSH/HMG+HCG
- GnRh

- Human Chorionic Gonadotrophin (HCG) is the first line of treatment, given in a dose of 2000-5000 i.u, 2-3 times weekly. It acts on the Leydig cells of testes and increases the testosterone level. Serum total testosterone is measured every month and dose is titrated to keep total testosterone in the range of 400-900ng/dl. Semen count is measured every month, after testosterone level becomes normal.

- Human menopausal gonadotrophin (HMG) or Pure Follicle stimulating hormone (FSH) in a dose 75-150 iu, twice a week is added to HCG after 6 months; if there is no improvement in spermatogenesis. These patients show improved seminal count in about 6-24 months of therapy

- GnRh can also be used in non responsive cases to deliver 2 hourly pulsatile doses, with a GnRh pump to enhance semen parameters.

Hypergonadotropic hypogonadism with primary testicular infertility was considered in 5 patients, where low testosterone was associated with elevated LH and FSH. Klinefelter (XXY) syndrome was observed in 2 of these patients, the incidence, being 1 in 500 males, and is listed in the Orphanet journal of rare diseases. [6] However, in one patient with hypogonadoniaemia, only raised LH and normal FSH, considered as having abnormal spermatogenesis was given antioxidant therapy. There was marked improvement in the seminal count, when determined at 3 months.

Testicular microlithiasis (TM) of scrotum was reported in one patient where hyperchoic opacities were seen in both testes on scrotal ultrasonogram. The initial sperm concentration in this male was 5 million/ml and the testes were also suboptimal in size, measuring 5cc and 6 cc.

Microlithiasis of testes is a rare disorder with prevalence of 0.6% and 9% in symptomatic adults and 2.4% to 5.6% in adult males without symptoms. [4] Poor seminal counts are associated with TM in about 30-60% of patients, because of obstruction of seminiferous ductules by calcium crystals with resulting secondary inflammation, increased intra-seminiferous pressure and an alteration in vascular supply to testicles. In a Chinese study, TM was associated with poor semen parameters in adult men with fertility intention. The extent of microlithiasis was found to be inversely correlating with semen parameters. [6] TM was thought to have a propensity for future occurrence of malignancy and was analysed in a recent study. The authors analysed European data and concluded that regular follow up in TM is required in these patients, only when it is associated with other risk factors for testicular germ cell tumour. [7]

Mild varicocele on ultrasonography was evident in 10 men. One person with clinically palpable varicocele and confirmed on USG, was sent for laparoscopic ligation. One patient had testicular lymphadenitis, with azospermia, thus suggesting that, in India tuberculosis is associated with TM in about 30% of patients. [4] Poor seminal counts are associated with TM in about 30-60% of patients, because of obstruction of seminiferous ductules by calcium crystals with resulting secondary inflammation, increased intra-seminiferous pressure and an alteration in vascular supply to testicles. In a recent study, TM was associated with poor semen parameters in adult men with fertility intention. The extent of microlithiasis was found to be inversely correlating with semen parameters. [6] TM was thought to have a propensity for future occurrence of malignancy and was analysed in a recent study. The authors analysed European data and concluded that regular follow up in TM is required in these patients, only when it is associated with other risk factors for testicular germ cell tumour. [7]

Mild varicocele on ultrasonography was evident in 10 men. One person with clinically palpable varicocele and confirmed on USG, was sent for laparoscopic ligation. One patient had testicular lymphadenitis, with azospermia, thus suggesting that, in India tuberculosis is associated with TM in about 30% of patients. [4] Poor seminal counts are associated with TM in about 30-60% of patients, because of obstruction of seminiferous ductules by calcium crystals with resulting secondary inflammation, increased intra-seminiferous pressure and an alteration in vascular supply to testicles. In a recent study, TM was associated with poor semen parameters in adult men with fertility intention. The extent of microlithiasis was found to be inversely correlating with semen parameters. [6] TM was thought to have a propensity for future occurrence of malignancy and was analysed in a recent study. The authors analysed European data and concluded that regular follow up in TM is required in these patients, only when it is associated with other risk factors for testicular germ cell tumour. [7]
was administered. Four of the 5 patients with oxidative damage, when treated with antioxidants showed improvement in seminal count, which was very encouraging. In a recent analysis, data about benefits of antioxidants on sperm parameters was studied from papers published between 2004 – 2015. The authors concluded that a combination of antioxidants L-carnitine, CoQ10, Vitamin C and E, showed a definite improvement in semen parameters like concentration, motility and morphology.[8] In the hypergonadotropic group, Klinefelter (XXY) syndrome was observed in 2 patients. Klinefelter has a potential risk for genetic transmission to the offspring and therefore these patients were advised donor intrauterine insemination of female partner or Intracytoplasmic sperm injection (ICSI) with donor semen. [10] Gene analysis was not included in the study; as it was a low budget analysis.

CONCLUSION
A simple algorithm as suggested in this study, has simplified the diagnosis and thereby management of infertility in the male partner, when a couple visits a gynaecologist. A specific diagnosis was attempted and treatment was provided depending upon the etiology. Medical treatment was offered to males with a treatable cause, such as those with an endocrinial dysfunction. Few selected patients with normal karyotype and sperm transport disorders were referred to a specific higher centre for therapies, such as sperm retrieval and storage. Males with abnormal karyotype were sent for donor insemination of female partner or ICSI. The study has been very reassuring in terms of eliciting the cause of subfertility, and improvement in semen count in a good percentage of patients, with a very minimal expense.

ACKNOWLEDGMENTS
None.

AUTHORS’ CONTRIBUTIONS
The participation of each author corresponds to the criteria of authorship and contributorship emphasized in the Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly work in Medical Journals of the International Committee of Medical Journal Editors. Indeed, all the authors have actively participated in the redaction, the revision of the manuscript, and provided approval for this final revised version.

COMPETING INTERESTS
The authors declare no competing interests with this case.

FUNDING SOURCES
None.

REFERENCES