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ABSTRACT 

Gliomas are rapidly progressive, neurologically devastating, nearly uniformly fatal brain 

tumors. In WHO grade IV tumors like glioblastoma, the standard of care involves maximal 

surgical resection followed by concurrent radiation therapy (RT) and temozolomide (TMZ) 

chemotherapy followed by adjuvant TMZ. This results in overall survival (OS) of less than 

30% at two years. Currently, tumor progression assessment is based on clinician assessment 

and MRI interpretation using Response Assessment in Neuro-Oncology (RANO) criteria. 

These criteria classify response as complete, partial, stable, or progression. This approach, 

however, suffers from significant limitations due to the difficulty in interpreting MRI 

findings on T1 gad and T2 FLAIR sequences, lack of concurrent correlation with radiation 

therapy fields, inconsistent follow-up imaging, concurrent administration of steroids, and 

systemic management, including immunotherapy. The neuro-oncology field struggles with 

classifying true progression vs. pseudoprogression vs. pseudoresponse with progression 

guidelines actively evolving. The lack of consensus on the definition of progression impairs 

the ability to initiate earlier management upon progression, judge the impact of therapies, 

and optimize and personalize management. Due to the pivotal role of imaging, radiology is 

at the center of the question of optimizing and advancing response criteria [1-5]. The 

hypothesis is that MRI images of patients with glioma, when subjected to change over time 

analysis (at diagnosis, prior to and post-radiation therapy), can identify features predictive of 

treatment failure helping guide patient management in the clinic. Likely a combination of 

imaging and biospecimen-driven biomarkers is needed. Given the large amount of data 

generated by both approaches, success in this space hinges on leveraging computational 

approaches and artificial intelligence algorithms validated using large-scale publicly 

available data sets to disentangle the complexity and heterogeneity inherent in glioma 

progression. 
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INTRODUCTION 

Despite numerous advances in molecular characterization [6-9] and imaging [10], the reality 

of the clinical interaction with patients in the neuro-oncology clinic remains focused on the 

ever-present challenge embedded in the question: "Did the patient progress or not? Was the 

treatment effective? When should a different treatment be initiated?” Arguably most, if not 

all, provider-patient interactions, whether at first consult or upon follow-up, center on these 

questions. There is widespread recognition of the limitations in interpreting imaging in the 

context of glioma progression, which directly affects patient care, personalization of patient 

management, and outcomes and further limits how we interpret ongoing evidence as it 

develops [11-13]. The understanding and interpretation of progression have a significant 

impact on patient management and outcomes [14], and there is increasing awareness that 

response criteria, primarily when predicated on human assessments of morphologic change 

in tumor size, do not capture the complexity of tumor heterogeneity or management, 

particularly in the context of molecular-targeted therapies [15]. Most imaging findings are 

also challenging to distinguish from the radiation therapy effect [13]. The lack of consensus 

on the definition of progression impairs the ability to judge the impact of therapies and, 
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therefore, the management optimization. Since imaging is likely to remain the cornerstone 

of response assessment for the foreseeable future, radiology is at the center of the question 

of optimizing and advancing response criteria [1-5,11-13]. This review will summarize the 

ongoing barriers to response criteria in glioma and how they may be addressed by harnessing 

data embedded in imaging already collected as the standard of care in brain tumor patients. 

We will also review how advancement will include novel imaging, the augmentation of 

imaging-driven response criteria using biospecimen data, and the additive benefit of artificial 

intelligence. 

 

THE EVOLUTION AND LIMITATIONS OF APPROACHES TO GLIOMA 

RESPONSE CRITERIA 

The Macdonald criteria initially modeled on the RECIST criteria [16] were published in 1990 

[17] initially developed for CT and extrapolated to MRI. These initial criteria grouped 

classified tumor response into four categories: complete response (CR) or partial response 

(PR) with options to classify ongoing findings as stable disease (SD) or progressive disease 

(PD). Complete response was defined as meant disappearance of all enhancing tumors, with 

the patient no longer on steroids and neurologically stable or improved. Partial response was 

employed as AIF, a 50% reduction in the size of the enhancing tumor was identified, steroids 

were stable or reduced, and the patient was neurologically stable or improved. Progressive 

disease was defined as a greater than 25% increase in the size of the enhancing tumor, 

identification for any new tumor or neurologic worsening, and steroids stable or increased 

(Table 1). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The evolution of progression criteria in glioma over time based on clinical data, 

imaging interpretation, steroid, and RT administration. N – manual input, minimal to no 

capture; M – manual, limited capture; D-digital capture; B-binary capture; S-subjective; Q-

quantitative information may be captured; O – attempt at objective data capture. *variable 

inputs, may not include imaging and may only include limited clinical information. 

 

For a patient to have responded, a sustained (defined as persisting > 1 month) and significant 

(defined as > 50% reduction in the size of the enhancing tumor on CT or MRI scans) was 

required [17]. These criteria were revised to the RANO criteria in 2010 [18] themselves since 

revised [5,18,19] (Figure 1).  

 

 



Oncol Insights.2022;1:1-14  3 

Andra Krauze                                               Using Artificial Intelligence and Magnetic Resonance Imaging in Response Assessment in Glioma   
 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The evolution of response criteria in glioma. Left: Macdonald criteria modeled on 

the RECIST criteria, implemented for CT and extrapolated to MRI (1990`s). Middle: 

Revision of Macdonald criteria to RANO criteria (2010`s) with inclusion of the non-

enhancing tumor component in low-grade glioma (LGG) on T2-weighted and fluid-

attenuated inversion recovery (FLAIR) image sequences (lower panel). Evolution of DWI 

and RANO criteria with working groups assigned to different facets of the progression 

problem: (LGG) (RANO-LGG), high-grade glioma (HGG) (RANO-HGG), administration 

of immunotherapy (iRANO), neurological progression (NANO) and patient reported 

outcomes (RANO-PRO). Right: novel imaging  modalities (PET-CT, MRS, white matter 

tractography and brain functional imaging) [86-90] [91-94]. 

 

 

The initial revision occurred in response to the limitations difficulties of the MacDonald 

criteria, in capturing specifically the recognition of pseudo progression in patients receiving 

radiotherapy and temozolomide and due to the introduction of antiangiogenic agents that 

rendered previous approaches to classifying progression more challenging [18]. The revision 

included assessing the non-enhancing component of the tumor originating in T2-weighted 

and fluid-attenuated inversion recovery (FLAIR) image sequences, an ongoing challenge 

since this sequence defines both peritumoral edema and delayed radiation white matter 

changes with similar radiographic appearances. At the time of publication, the authors 

commented on the difficulty in both precise quantifications of the increase in T2/FLAIR 

signal and the ongoing challenges in different abnormal T2/FLAIR representative of tumor 

progression from other causes of increased T2 or FLAIR signal (radiation field related 

changes, decreased corticosteroids, postoperative changes, systemic management) [18] 

(Figure 1). The parameter of quantifying progression for patients being considered for 

enrollment in clinical trials based on enhancing lesions (>25% increase in the product of 

perpendicular diameters compared to baseline or best response and estimated volumetric 

change of >=40%) is problematic since bidirectional measurements are operator dependent 

and correlate poorly to tumor volume [4,20,21]. While all the above factors are currently 

needed to interpret progression in glioma (tumor dimensions, corticosteroid dosing, presence 

of comorbidities, neurological exam), they remain inconsistently captured in most 

retrospective data sets with quantification of the T2/FLAIR signal in relationship to radiation 

therapy fields rarely examined in a systemic therapy context in the clinic and equally ignored 

in registries. However, RANO criteria continue to be used, and several working groups have 

now been assigned to different facets of the progression problem, including the interpretation 

of response in low-grade glioma (LGG) (RANO-LGG), high-grade glioma (HGG) (RANO-

HGG), in the context of the administration of immunotherapy (iRANO) and the definition of 

neurological progression (NANO) [4,5,19,22] (Figure 1). 
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GLIOMA PROGRESSION AND MRI – DOCTOR, DID THE TREATMENT 

WORK? – THE "NEEDLE OF TRUTH," THE "TEST OF TIME."  

Standard of care guidelines support MRI of the brain prior to tumor resection, following 

tumor resection, then 2 to 8 weeks following radiation and subsequently every 2-4 months 

for three years, and then every 3-6 months indefinitely [31]. The current guidelines 

acknowledge that MRI of the brain may not be available at all institutions. Additional 

imaging modalities such as MR spectroscopy, MR perfusion imaging, and PET may have 

even less availability than MRI [23]. Nonetheless, MRI of the brain currently represents the 

most extensive available data set that can be studied to advance analysis that may improve 

the response criteria. The first MRI of the brain following completion of standard of care 

management is performed 2 to 8 weeks following radiation therapy. This first post-treatment 

scan is marked by a significant increase in contrast enhancement, often indistinguishable 

from treatment effect, and is fraught with the risk of mistaking pseudo progression for true 

progression [24]. As a result, In an attempt to account for this phenomenon, the RANO 

criteria recommended that within the first 312 weeks months after irradiation, patients not be 

labeled as having recurred to prevent early or inadequate patient enrollment on being 

excluded from clinical trials for recurrent disease unless progression is a new lesion was 

noted outside the radiation field or there is clear histologic tumor tissue documentation of 

progression was available [18]. Therefore, existing guidelines allow for increased 

enhancement to be considered tumor progression only if the enhancement is located "outside 

the radiation field" or there is tissue confirmation of progression if tissue diagnosis of tumor 

presence after chemoradiation is available. However, both aspects remain theoretical in that, 

most often, the radiologist interpreting and reporting the imaging does not know where the 

radiation field is in relation to the contrast enhancement. The intricacies of the radiation field 

itself with respect to the dose delivered and its relationship to the tumor volume prior and 

following radiation are not often viewed. In tertiary neuro-oncology centers, the isodose RT 

map may be shown, illustrating how "a picture is worth a thousand words" with all the 

affiliated specialties including neurosurgery, neuro-oncology, and radiology as a team able 

to interpret the findings on the scan while comparing and referencing the radiation therapy 

dose. Such a scenario is less likely outside of expertise centers and particularly challenging 

in resource strained settings with more limited or delayed MRI availability and clinician time. 

It is also unlikely a realistic prospect in settings where patient volume is exceptionally high 

due to resource limitations. 

The second parameter of possible early progression is histologic documentation of 

progression. The question of obtaining tissue in this vulnerable patient cohort with existing, 

resolving, or progressing neurological symptoms considering the poor prognosis is equally 

challenging when recurrence may be radiologically suspected. Surgical intervention may be 

associated with considerable risks for the patient. Hence, fewer than 10% of patients may 

have repeat tissue obtained at this point in the treatment course [25]. Further, histopathologic 

findings may not correlate with clinical outcomes [25]. When tissue is obtained, barriers to 

consistent pathological interpretation remain due to both sampling heterogeneity and 

difficulties in interpreting tumor progression vs. treatment effect [2,13,24,26,27]. Therefore, 

when faced with uncertainty regarding progression at 2-8 weeks following completion of 

chemoradiation (CRT), the management de facto is the continuation of standard of care or 

trial management and repeating imaging at the 3-month mark [28]. Per RANO, equivocal at 

this time, if it is unclear whether the patient has progressed on imaging, they may continue 

changes allow patients to stay on a study with a repeat scan in >= four weeks, and if at that 

time the suspected progression is confirmed deemed real, the time of progression is 

backdated to the time point at which progression was suspected [18]. At 12 weeks following 

completion of treatment, RANO criteria describe progression (Table 1). However, questions 

remain since biological tumor behavior is heterogenous (low grade vs. high-grade tumor) 

and treatment has been ongoing (temozolomide or study drug), thus making it very difficult 

to connect cause and effect or examine biological relationships that underpin response vs. 

progression. The lack of clarity leads to challenges when studying novel agents. The 

inconsistent assessment of progression-free survival (PFS) combined with the limitations 

above is augmented by the ongoing evolution of response criteria, causing data collection, 

analysis, and interpretation variability. As evidenced in a recent study of Vorasidenib (AG-

881), a first-in-class, dual inhibitor of mIDH1/2, response assessment is a serious challenge. 

The response here was defined as complete or partial, as determined by the investigator based 

on RANO criteria [18] or RECIST version 1.1[16], respectively[29]. However, in the context 

of patients with non-enhancing tumors, the response was defined as CR, PR, and minor 

response (MR) as determined by the investigator based on RANO-LGG [30]. In this study, 

the authors acknowledge that due to the challenges of assessing tumor response on MRI in 
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low-grade glioma, the RANO working group considers a 25–50% reduction in tumor size 

compared to baseline clinically meaningful, with several classifications now including MR 

as a measure of treatment effect [18,31]. Notably, in the context of immunotherapy, these 

aspects are still more complicated, hence the iRANO effort [31] allowing patients to continue 

management. The iRANO criteria allow the patient to continue immunotherapy within the 

first six months of initiating it since pseudoprogression is most likely to be observed. If MRI 

scans show radiologic progression (a 25% increase in area or appearance of new lesions), if 

provided, the patient is clinically stable, and patients may be observed closely with advising 

close observation with repeat MRI [4,31]. 

Another issue is what constitutes clinical neurological progression in a patient population 

where experienced clinicians can often pick up on very subtle changes that may be difficult 

to quantify and capture, the use of steroids complicating the picture further [32]. This 

difficulty led to the need to standardize clinical progression assessment with the Neurologic 

Assessment in Neuro-Oncology (NANO) scale, a standardized objective metric designed as 

an objective framework to measure neurological function in neuro-oncology [33]. NANO, a 

means to render the clinical findings more objective, reproducible, and quantifiable, became 

a necessity of robust classification. Incidentally, the capture of steroids initiation, 

discontinuation, and dose changes, particularly considering the need to taper and adjust based 

on clinical improvement or deterioration combined with the complexity of doing so in 

patients with varying levels of neurological detriment, is a challenge in and of itself. 

Pharmacy records are often available, but the data is nearly impossible to interpret in 

isolation, and capture is generally complex to achieve robustly outside of clinical trials (Table 

1). Per It should be noted that NANO, the neurologic response would be classified as allows 

for response to be non-evaluable if it changes are potentially attributable to AIS more likely 

than not that factors other than underlying tumor presence or progression activity contributed 

to an observed change in neurologic function [33]. These Examples include changes in 

concurrent medications, especially corticosteroids, sedatives, narcotics [33]. The realization 

that steroids management needs to be robustly captured for this feature to be used as an 

endpoint led to the Response Assessment in Neuro-Oncology (RANO) Working Group effort 

to better define corticosteroid use endpoints in neuro-oncology brain tumor clinical trials 

[32]. This effort is ongoing. In the context of radiation therapy, despite increased emphasis 

on imaging, genomics, and computational approaches, the role of radiation therapy fields and 

correlation of imaging changes to isodose lines does not feature significantly [2,34-38]. Both 

pseudoprogression and tumor necrosis occur in the radiation therapy field [32]. The timing 

(pseudoprogression defined as appearance <5 months after radiotherapy vs. tumor necrosis 

> five months after RT) and imaging features, however, appear to be distinct and poorly 

understood as recent evidence examining clinical, radiographic, and histopathological data 

show [39]. Complexity is further added since it also appears that proton vs. photon RT may 

be exhibiting different contrast enhancement patterns following radiation therapy with a 

different timing and pseudoprogression pattern [27,40]. There is also increasing evidence 

that tumors "pseudo progress" differently based on their biology and management 

[2,24,27,40,41]. The sum of the above limitations is a universal clinical challenge with added 

patient anxiety, psychological uncertainty, and frustration on patients, families, and 

clinicians. Consults and follow-ups predicated on delivering the best care and sustaining 

hope struggle without clarity surrounding progression to offer the best management. These 

limitations raise several questions: if the MRI at 2-8 weeks’ time point rarely if ever alters 

management, then patients want to understand why it is being performed. If MRI is the best 

option for determining when tumor progression has occurred, is the neuro-oncology field 

harnessing all the information MRI provides to the best ability? Are there potentially other 

means that may augment MRI findings to directly address these persistent clinical questions, 

e.g., biospecimen-driven biomarkers? Furthermore, is evolution possible without robust 

computational analysis endpoints embedded in clinical trials and real-world data collection? 

(Figure 1). 

 

IS THE MRI THE BEST IMAGING MODALITY TO EXAMINE PROGRESSION 

VS. STABILITY, AND IS THE NEURO-ONCOLOGY FIELD HARNESSING ALL 

THE INFORMATION MRI PROVIDES TO OUR BEST ABILITY? 

While current guidelines support the ongoing use of MRI for response assessment in glioma, 

they acknowledge both the lack of across-the-board accessibility and the concurrent use of 

other imaging modalities [28]. Standardized imaging protocols are proposed and generally 

implemented in Europe and North America [5]. MRI is the most likely imaging method 

available to patients in most North American and European clinical settings. Insignificant 

resource strained settings CT is still significantly in use. Novel imaging methods such as 
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MR, including spectroscopy, perfusion- imaging weighted MRI, Positron Emission 

Tomography/Computed Tomography (PET/CT), or Single-photon Emission Computerized 

Tomography (SPECT/CT) based on functional or molecular aspects are promising but not 

accessible to most patients [23,42]. With MRI, there are, however, limitations even in less 

resource strained settings which include lack of consistent imaging following surgical 

resection and variable timing depending on access to the scanner, the lack of further imaging 

in patients with early progression, significant comorbidities, or poor neurological function 

causing scan delays or making scans impossible. More imaging scans are being performed 

in younger patients with superior performance status upon suspicion of progression. These 

aspects can add significant bias to currently available data sets. The ability to fully harness 

the staggering amount of information embedded in MRI data sets is the subject of ongoing 

analyses. It is increasingly clear that enhanced T1-weighted MRI in isolation is unreliable 

[43]. As previously noted, T2 FLAIR changes initially not included in the Macdonald criteria 

were subsequently added in RANO; however, this was largely binary without a quantitative 

component (due to difficulty in measuring the extent of FLAIR signal and attributing its 

cause) and hence subjective[18] (Table 1). Novel advanced MRI techniques have been 

studied receive ongoing attention, but their accuracy is not well known. Recent evidence 

suggests that tumor volume may be superior for determining response assessment in LGGs 

due to more stable measures of tumor growth rates allowing for assessment of tumor growth 

over time with less variability, highest and possibly superior inter-reader agreement, and 

lowest reader discordance rates[44].The extent and alteration overtime of the T2 FLAIR 

signal remains a significant challenge in LGG since these tumors are non-enhancing upfront 

but is also pivotal in HGG since the T2 FLAIR signal is altered by radiation therapy as well 

other factors [18,22]. Recent evidence when analyzing longitudinal normalized FLAIR 

images using voxel-wise Parametric Response Mapping (PRM) to monitor volume fractions 

of increased, decreased, or unchanged altered FLAIR intensity, showed that PRMrFLAIR+ 

exceeding 10%, stratified patients for at risk of failure after 5.6 months (p<0.0001), while 

RANO criteria did not stratify these patients until 15.4 months (p <0.0001)[45]. Similarly, 

Gatson et al. used the T2 FLAIR signal to show that 75% of patients in their cohort developed 

progression on average 3.4 months before RANO-assessed progression with 84% sensitivity. 

T2 FLAIR signal intensity predicted for the neurological decline, significantly poorer 

outcomes for PFS (median, 10 vs. 15 months) and OS (median, 20 vs. 29 months) compared 

to SI-negative [46]. More complex MRI sequences derived quantitative parameters such as 

might be obtained from IVIM-DWI and 3D-ASL, including apparent diffusion coefficient 

(ADC), slow diffusion coefficient (D), fast diffusion coefficient (D*), perfusion fraction (f), 

and cerebral blood flow (CBF), remain the subject of ongoing investigations[47]. A recent 

meta-analysis defining the role of diffusion MRI-derived quantitative ADC identified six 

studies on this subject. It showed that ADC represents an effective approach that may be an 

exciting avenue for differentiation of glioma recurrence from progression and pseudo 

progression [48]. A recent publication showed that perfusion imaging with ASL-MRI can 

predict malignant progression within 12 months in patients with grade II glioma[33]. Another 

study showed that IVIM modeling of diffusion MRI during chemoradiation could predict 

therapeutic outcomes response in IDH wild type glioblastoma [49]. While all perfusion 

parameters measurements appear to be higher in patients with true disease progression, 3D 

pseudo-continuous arterial spin labeling (3D PCASL) and dynamic susceptibility contrast-

enhanced (DSC). Perfusion MRI has revealed nearly equivalent performance for the 

differentiation of separating progressive disease and from pseudo progression. It appears that 

although 3D PCASL may be less sensitive to susceptibility susceptible to artifact 

[34].Existing guidelines do incorporate the use of MRI with additional sequences, including 

DWI and PWI, both supported by evidence in the context of progression vs. pseudo-

progression[50]. These sequences, however, are not standardized between institutions, and 

reporting of findings based on these additional sequences is inconsistently performed. In a 

recent metanalysis, both DWI and PWIdiffusion and perfusion imaging provided optimal 

reasonable diagnostic performance in differentiating separating pseudo progression from true 

tumor progression in cerebral glioblastoma, but neither technique proved, although neither 

was superior[50]. Regarding functional imaging, there are challenges foremost with access 

and the interpretation of PET signal in the brain. A recent metanalysis identified that 

[18F]FET, [11C]MET, and [18F]FDOPA PET in combination with MRI showed promising 

results for improving accuracy in diagnosing tumor recurrence and was able to detect, 

detecting early treatment failure sooner, while and distinguishing between tumor progression 

and treatment-induced changes in patients with HGG treated effect in patients treated with 

bevacizumab[51]. Recent data shows that changes of 18F-FET PET parameters may be 

helpful to identify responders to adjuvant TMZ early after treatment initiation [52]. Although 
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these novel approaches are promising, they are less likely available to most patients and 

clinicians with data sets yet small and evolving. Future analysis as data is growing will likely 

allow for progress. 

 

ARE THERE POTENTIALLY OTHER DATA SOURCES THAT MAY HELP 

ANSWER THE PROGRESSION QUESTION, E.G., BIOSPECIMEN DRIVEN 

BIOMARKERS?  

The existing shortcomings of current response criteria have fostered ongoing efforts in 

researching biomarker avenues for progression [53]. Given the above discussion of the 

limitations of interpreting imaging concerning tumor progression, increasing emphasis is 

being placed on circulating biomarkers that may theoretically augment response criteria 

(Figure 2). A recent systematic review evaluated circulating biomarkers' differential 

expression and diagnostic accuracy for several outcomes. Including pseudoprogression, 

tumor progression, and radionecrosis, pseudoresponse in patients undergoing treatment for 

World Health Organization grades II-IV diffuse astrocytic and oligodendroglial tumors [54]. 

They identified 58 studies and 133 distinct biomarkers based on 1,853 patients across various 

treatment modalities. Fifteen markers for the response, progression, or stable disease and five 

markers for pseudoprogression or radionecrosis reached level IB. No biomarkers reached 

level IA, and only five studies contained data related to diagnostic accuracy measures. The 

authors noted that the overall methodological quality of included studies was low, with no 

biomarkers ready for clinical application identified [54]. A systematic review looking at 

combinations of MR imaging biomarkers including T1, T2, FLAIR, T1c, and perfusion-

weighted and diffusion-weighted imaging (449 abstracts) showed that multi-parametric 

biomarkers could predict clinical outcomes in gliomas, particularly when linked to specific 

subcompartments of the tumors [55]. Promising evolving options involve liquid biopsy [56] 

in the form of blood draw, saliva, urine predicated on CSF based on tumor contents shed into 

the circulation, enabled by a leaky blood-brain barrier in glioma [57]. Examples of analyses 

based on liquid biopsy include research into: extracellular vesicles (EVs) (eg. serum 

exosomes)[54,58,59]; cellular markers (eg. circulating tumor cells (CTCs), platelets)[56,60]; 

circulating nucleic acids (eg. cell-free DNA (CfDNAs) [61], circulating tumor DNA 

(ctDNA) [62], and protein markers (e.g., hypermethylation)[8,63], all of which can allow for 

real-time monitoring and have been analyzed concerning response in glioma [54]. 

Hypermethylation, treatment, and survival are intertwined entities complicating imaging and 

biomarker analysis [64]. Recent data suggest that miR-21, -222, and -124-3p in serum 

exosomes may be useful to represent exciting new molecular biomarkers that can augment 

clinical evaluation of early tumor progression during post-surgical therapy in patients with 

HGGin glioma[58]. Multiple modality data aggregations with imaging can help identify 

cause/effect relationships between tumor biology and management and make these more 

analyzable to allow for earlier identification of progression. 

In summary, several evolving avenues aim to identify biomarkers for progression at earlier 

time points, which may augment MRI interpretation. The clinical applicability of this 

evolving research area is undermined by a lack of sufficient tissue and the need for multiple 

testing of the same tissue, which further limits the available testing material. The use of 

heterogeneous and non-CLIA (Clinical Laboratory Improvement Amendments) approved 

analyses combined with the lack of tissue available upon recurrence and the transformation 

of tumors over time renders biospecimen-related conclusions static as the disease evolves in 

response to management. Thus, shortcomings persist, and although data sets in this space are 

growing, they remain small and heterogeneous. There is, however, increasing understanding 

that biomarkers that may be validated for one therapy may not carry over to other therapies 

and may be particularly challenging to interpret when patients undergo multiple treatments 

with a different mechanism of action, e.g., chemotherapy, and radiation, and potentially other 

agents including immunotherapy concurrently or separated in space and time. Concerning 

RT, a tumor volume target-based treatment modality, neither imaging changes nor molecular 

targeting have been implemented to address progression and adapt or optimize management. 

This raises whether every intervention should carry a robust biomarker to ensure 

management optimization and to what extent this is realistic. RT-related biomarkers are 

lacking[65,66], and efforts need to be made to grow from data mining to data farming despite 

data sharing and the complex interplay between management and specimen collection 

[60,67,68]. 
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Figure 2. Circulating biomarkers in glioma with applicability to real-time response 

assessment[95-98]. Left panel: Liquid biopsy in blood draw with tumor contents shed into 

the circulation enabled by a leaky blood-brain barrier in glioma. Right upper panel: Example 

of analyses based on liquid biopsy, including research into extracellular vesicle types. Right 

lower panel: Clinical applications of circulating tumor DNA (ctDNA) in general oncology 

comparing conventional biopsy (upper) with liquid biopsy (lower) with sample collection 

(normal DNA, ctDNA, tumor clones) across the natural history of the malignancy from 

neoplastic transformation to growth of the primary tumor to tumor progression following 

treatment, to eventual metastasis. 

 

 

IS ADVANCEMENT IN DEFINING GLIOMA PROGRESSION POSSIBLE 

WITHOUT COMPUTATIONAL ANALYSIS AND ROBUST ENDPOINTS 

EMBEDDED IN CLINICAL TRIALS AND REAL-WORLD DATA COLLECTION? 

We would argue that based on the growth of available data, clinical imaging largely MRI 

based, specimen related data paralleled by the significant development of novel agents, 

defining glioma progression in terms of tumor dimensions or clinical deterioration is no 

longer realistic or likely to provide the much-needed clinical answers. Exact numbers for 

data growth in this space are lacking; however, evidence is mounting rapidly [6,12,55,69-

72]. The how of data analysis has become the cornerstone of obtaining clinically meaningful 

results. Data is abundant and complex and often not consistently interpretable by humans 

(e.g., MRI ADC map or CBV). Machine learning has been widely applied to the processing 

of MRI data in glioma research and continues to reveal significant potential for clinical 

applicability. A recent systematic review analyzed the current state of machine learning 

applications to glioma MRI data by using machine learning for systematic review automation 

analysis [73]. Various data points were extracted from 153 studies wherein natural language 

processing (NLP) analysis was employed for keyword extraction, topic modeling, and 

document classification. The authors founds that machine learning has been applied to tumor 

grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, 

detection of progression and patient survival prediction with model performance generally 

strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision 

= 0.88 ± 0.11)[73]. Top performers were convolutional neural networks, support vector 

machines, and random forest algorithms. They also notably pointed out that NLP and transfer 

learning resources enabled the successful development of a replicable method for automating 

the systematic review article screening process with the potential to increase the efficiency 

of data evaluation and clinical implementation. Liu et al. described a clinical study aimed at 

evaluating quantitative parameters from a number of novel imaging approaches for 

diagnostic performance of quantitative parameters obtained from IVIM-DWI and 3D-ASL, 

including apparent diffusion coefficient (ADC), slow diffusion coefficient (D), fast diffusion 

coefficient (D*), perfusion fraction (f), and cerebral blood flow (CBF)[47]. However, 

institutional results will not be generalizable without standardization of imaging acquisition. 
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Consistent data processing to allow for a "lowest common denominator" is needed when 

standardization is lacking. Large-scale data sets for training and testing are growing. This 

includes TCGA-GBM (617 GBM cases)[74], TCGA – LGG (199 cases)[75], Rembrandt/ 

open access Georgetown Database of Cancer (G-DOC) (671 cases)[76], GliomaDB[77] 

(amalgamates 21,086 samples from 4303 patients integrating multi-channel data from 

glioblastoma multiforme (GBM) and low-grade glioma (LGG) originating in The Cancer 

Genome Atlas (TCGA), Gene Expression Omnibus (GEO), the Chinese Glioma Genome 

Atlas (CGGA), the Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling 

of Actionable Cancer Targets (MSK-IMPACT), the US Food and Drug Administration 

(FDA), and PharmGKB). There is wide-ranging variability in the origin and period patients 

were treated how and what data is captured [74,75,77], which can significantly impact feature 

selection and results[12,26,71,78-80]. TCGA, for example, collects gender, ethnicity, 

methylation status, age at diagnosis, and vital status but has limited resection status 

information or information on the administration of therapeutic agents, the treatment intent, 

or the details of radiation therapy administration). We are now seeing very promising CI for 

many analyses but whether these can be replicated in large data sets or with different 

institutional data remains unclear, with some approaches proving unstable [81]. Since there 

are many avenues of feature selection, deep learning, and approaches that combine with 

limited validation, there is an ongoing lack of clinical confidence as the field progresses. 

Superior confidence indexes are often reported on [82], but validation is often not published, 

or results are difficult to replicate for many approaches. This reflects the use of smaller 

institutionally curated data sets and may be mitigated using federated learning [83]. When 

examining the multifaceted challenges embedded in glioma progression criteria, data would 

need consistent acquisition, processing, and analysis with successful approaches that can be 

cross-validated to achieve success. Federated approaches are growing [10, 83-85], but 

problems persist with data heterogeneity, a notable lack of RT data use to allow for 

progression analysis, and a lack of publicly available RT data sets. Radiology reporting is 

inconsistent, and although NLP may allow for more in-depth data mining, it could also add 

further bias as we work towards biomarker development. 

 

CONCLUSION 

In conclusion, our data suggest that CIP is an independent and strong prognostic factor in 

MM that should be included in the baseline workup and monitoring of both NDMM and 

SMM. When IP is measured by conventional methods (CIP), it is present in most patients at 

the moment of diagnosis, and it is associated with a higher tumor burden. Despite this, we 

recommend that more specific alternatives such as the HLC assay should be used instead. 

The immune profiling may play a crucial role in the outcome of MM [19], but probably only 

a complete immune evaluation will successfully predict survival in MM patients [20]. 
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