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ABSTRACT 

CBX7 is a member of the chromobox gene family, which plays an important role in epigenetic 

transcriptional regulation. In this study, we found that compared to normal mammary tissues, 

mRNA levels of CBX7 are consistently significantly downregulated in breast cancers (BCs) 

across different datasets. Integrative multiomics analysis revealed the genetic and epigenetic 

mechanisms for the loss of CBX7 expression in BCs. Lower expression levels of CBX7 are 

significantly associated with shorter overall, disease-free, and distant metastasis-free survival 

of patients with BC. These prognostic impacts of CBX7 are independent of estrogen receptor 

status and PAM50 molecular subtypes. Coexpression analysis identified 207 genes 

consistently coexpressed with CBX7 (157 negatively and 50 positively). Gene Ontology, 

KEGG, and Reactome enrichment analysis revealed that cell cycle-, DNA replication-, and 

mitosis-related pathways are significantly overrepresented within the set of CBX7 negatively 

coexpressed genes, suggesting that CBX7 functions as a suppressor of the cell cycle. 

Moreover, transcription factor enrichment analysis detected the E2F family of transcription 

factors significantly associated with CBX7 negatively coexpressed genes, consistent with E2F 

function regulating the cell cycle. Furthermore, we found that loss of CBX7 expression 

significantly increases genomic instability and tumor mutation burden. Our findings indicate 

that CBX7 acts as a tumor suppressor in BC through its potential role in the negative regulation 

of cell proliferation and the maintenance of genome integrity. 
 

Keywords: Breast cancer, CBX7, genetic alteration, epigenetic alteration, prognosis, gene co-

expression. 

 

INTRODUCTION 

Breast cancer (BC) incidence continues to rise globally, with over 2 million new cases 

diagnosed yearly [1-3]. In the last two decades, the advent of biotechnologies, especially next-

generation sequencing, has extensively cataloged the multiomics landscape of BCs [4-7], 

which has deepened insights into its heterogeneity and expanded our understanding of the 

disease. Despite the excellent progress made in the treatment and management of patients with 

BC, therapeutic resistance and distant metastasis, which inevitably lead to patient death, 

continue to be a daily challenge [1-3]. Therefore, the need to discover novel therapeutic targets 

remains one of the holy grails of BC research. 

The epigenetic modifications, such as DNA methylation, histone modifications, and 

noncoding RNAs, lead to altered gene expression independent of changes in the primary 

genomic sequence, which contributes to cancer development and progression [8-10]. Cancer 

cells have been discovered to harbor epigenetic abnormalities [9, 11] in addition to genetic 

alterations. The chromobox (CBX) protein family, containing a chromodomain that binds to 

H3K27me3, plays an essential role in the epigenetic regulation of transcription of genes [12, 

13], including both tumor suppressors and oncogenes. Recent studies have revealed the distinct 

mailto:JHMao@lbl.gov
http://10.0.215.45/oi.2023.691
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.55085/oi.2023.691
https://orcid.org/0000-0001-9320-6021
https://crossmark.crossref.org/dialog/?doi=10.55085/oi.2023.691&domain=pdf&date_stamp=


2 

Cai Y et al.                                                                       Integrative Analysis of Genetic and Epigenetic Alterations in the CBX7 Gene Reveals  
 

 

  

 
Oncol Insights.2023;2:691  

functions among CBX family members in cancer. For example, CBX3 was found to be upregulated, whereas CBX7 

was downregulated in many types of human cancer [14-22]. Some studies have shown that CBX3 transcriptionally 

suppresses the p21 gene to promote cell proliferation [23-25], while CBX7 transcriptionally suppresses CCNE1 

expression to inhibit cell proliferation [26]. These studies indicate that some CBX genes function as oncogenes 

and others act as tumor suppressor genes. Moreover, the expression of many CBX genes has a prognostic impact 

on human cancer [14-22]. 

Although it has shown that the expression of CBX7 is significantly reduced in BC [19, 27, 28], the mechanisms 

for the downregulation of CBX7 expression and its functional role in BC remain largely unknown. In this study, 

we further investigated the CBX7 gene using integrative multiomics analysis. Our results showed a loss of CBX7 

expression through genetic and epigenetic alteration in BC. We also discovered that CBX7 is negatively 

coexpressed with important cell cycle-related genes, including CCNB1, CCNB2, and CCNE1. Therefore, we 

concluded that CBX7 acts as a tumor suppressor in BC through its potential role in the negative regulation of cell 

proliferation. 

 

MATERIALS AND METHODS  

Datasets and Online Analytic Tools Used in this Study 

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome 

Atlas Breast Invasive Carcinoma (TCGA-BRCA) data are publicly available and downloaded from cBioPortal 

(https://cbioportal.org/) [29, 30]. The online analytic tools included the following: TNMplot 

(https://tnmplot.com/analysis/) [31]; SMART (http://bioinfo-zs.com/smartapp/) [32]; bc-GenExMiner v4.8 

(http://bcgenex.ico.unicancer.fr/BC-GEM/GEM-Accueil.php?js=1) [33]; WebGestalt (http://webgestalt.org/) 

[34]. 

 

Statistical Analysis 

The difference in expression of CBX7 between BCs and normal breast tissues was examined using TNMplot. 

Genetic alternation frequency was assessed in METABRIC [5, 6] and TCGA-BRCA [4, 7] using cBioPortal. 

Epigenetic alterations were analyzed using SMART. The association of CBX7 expression with genetic and 

epigenetic alterations was assessed using the Mann–Whitney U test and Spearman’s correlation in SPSS (IBM 

SPSS Statistics 24), respectively. 

The associations of CBX7 expression with overall (OS), disease-free (DFS), and distant metastasis-free (DMFS) 

survival were examined using GenExMiner. The patients were optimally divided into two groups based on CBX7 

expression levels in both pooled microarray and RNA-seq datasets in GenExMiner. 

The list of CBX7 coexpressed genes was identified in the METABRIC and TCGA-BRCA datasets using 

cBioPortal. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway, Reactome pathway, and transcriptional factor network of CBX7 coexpressed genes 

were conducted using WebGestalt. 

Differences in aneuploidy score, MSI sensor score, fraction of genome altered, mutation count, and tumor mutation 

burden (TMB) were assessed by the Wilcoxon test in the TCGA-BRCA dataset using cBioPortal.   

The figure panels were downloaded from analytic tools or generated using SPSS (IBM SPSS Statistics 24). A two-

tailed p-value or FDR <0.05 was considered statistically significant. 

 

RESULTS 

Loss of CBX7 Expression through Genetic and Epigenetic Alteration in Breast Cancer 

We used TNMplot to assess CBX7 expression change in BCs. In both microarray and RNA-seq datasets, we found 

that CBX7 mRNA expression levels were diminished more than twofold in BC compared to normal breast tissues 

(microarray: fold change = 0.43, p = 4.74E-54; RNA-seq: fold change = 0.27, p = 4.92E-156) (Figure 1A, B). To 

identify the mechanism for reduced expression of CBX7, we examined the copy number alterations (CNA) in 

CBX7 using METABRIC and TCGA-BRCA datasets and found that a single copy of CBX7 was frequently deleted 

in BCs (METABRIC: 32.3%; TCGA-BRCA: 45.0%) (Figure 2A), which leads to a significant reduction of its 

expression (p < 0.0001) (Figure 2B). Surprisingly, we observed that CBX7 mRNA expression levels in tumors 

with a gain of CBX7 were significantly lower than those without copy number alteration (p < 0.0001) (Figure 2A). 

This result led to exploring the possibility of epigenetic alterations in CBX7 using methylation profile data, where 

different probes were used in the different locations of CBX7 (Figure 3A). Methylation levels of CBX7 in all 

probes were significantly increased in BCs compared to normal breast tissue (p < 0.0001) (Figure 3B, four left 

panels) using SMART. Moreover, high methylation levels of CBX7 significantly negatively correlated with its 

mRNA expression levels (p < 0.01) (Figure 3C, four left panels). Moreover, combined methylation levels 

(average methylation levels of four probes) were significantly increased in BCs compared to normal breast tissue 

(p < 1.0E-15) (Figure 3B, last panel) and significantly negatively correlated with its mRNA expression levels (p 

= 1.8E-12) (Figure 3C, last panel). All these findings suggest that the mechanism for reduced expression of CBX7 

is through genetic and epigenetic alteration. 
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Figure 1. Loss of CBX7 expression in breast cancers.  

The violin plots were generated in (A) microarray and (B) RNA-seq datasets using TNMplot. The p values 

were obtained by the Mann–Whitney U test. 

 

 
Figure 2. Genetic alterations in CBX7 gene in breast cancers.  

(A) Frequency of genetic alterations. (B) Correlation between genetic alterations and gene expression in 

METABRIC and TCGA-BRCA datasets. The p values were obtained from the Mann–Whitney U test. 
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Figure 3. Epigenetic alterations in CBX7 gene in breast cancers.  

(A) Chromosome location of the probes used to detect the methylation of the CBX7 gene in Illumina 

HumanMethylation27K or HumanMethylation450 BeadChip. (B) Comparison of the CBX7 gene methylation 

level between normal breast and breast cancer tissues. The p values were obtained from the Wilcoxon test. (C) 

Correlation between the CBX7 gene methylation and gene expression. The p values were obtained from 

Spearman correlation analysis. 

 

Prognostic Value of CBX7 Expression in Breast Cancer 

The bc-GenExMiner was used to evaluate the prognostic value of CBX7 mRNA expression in BC. We found that 

patients with BC with higher levels of CBX7 had significantly longer overall survival (OS) (HR = 0.61, 95% CI 

of HR: 0.55–0.68, p < 0.0001) (Figure 4A, Supplementary Figure 1A), disease-free survival (DFS) (HR = 0.65, 

95% CI of HR: 0.60–0.71, p < 0.0001) (Figure 4B, Supplementary Figure 1B), and DMFS (HR = 0.60, 95% CI 

of HR: 0.54–0.66, p < 0.0001) (Figure 4C). Since estrogen receptor (ER) status and the intrinsic molecular 

subtypes defined by PAM50 in BC are important prognostic factors, we next addressed whether the prognostic 

value of CBX7 is independent of these well-known clinical factors. Therefore, we conducted a subset analysis of 

CBX7 in ER+ and ER- tumors or in different molecular subtype tumors. Higher levels of CBX7 expression were 

significantly associated with longer OS, DFS, and DMFS in both ER+ and ER- patients (Figure 5, Supplementary 

Figure 2). As shown in Figure 5 and Supplementary Figure 2, CBX7 mRNA expression levels were significantly 

associated with OS, DFS, and DMFS in luminal B, HER2, and basal BC subtypes, significantly associated with 

OS in luminal A subtype, and significantly associated with DFS and DMFS in the normal-like subtype. These 

findings suggest that CBX7 expression levels provide an additional prognostic value to these known clinical 

factors.  
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Figure 4. Association of CBX7 gene expression with prognosis in breast cancers.  

(A) Overall survival (OS) analysis. (B) Disease-free survival (DFS) analysis. (C) Distant metastasis-free 

survival (DMFS) analysis. Kaplan-Meier curves. The p values were obtained from the log-rank test. 
 

 
Figure 5. Association of CBX7 gene expression with overall, disease-free, and distant metastasis-free 

survival analysis regarding ER status and PAM50 molecular intrinsic subtypes of breast cancer.  

The p values were obtained by the log-rank test. 
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Potential Mechanisms for the Contribution of CBX7 Loss to Breast Cancer Development 

Gene coexpression analysis was used to explore the potential mechanisms for the contribution of CBX7 loss to BC 

development. We identified 207 genes consistently coexpressed with CBX7 in both METABRIC and TCGA-

BRCA datasets (|R| ≥ 0.4 and FDR < 0.05) (Supplementary Table 1). CBX7 was negatively coexpressed with 

157 genes, whereas it was positively coexpressed with 50 genes (Supplementary Table 1). The set of CBX7 

negatively coexpressed genes contains many well-known cell cycle genes, such as CCNB1, CCNB2, CCNA2, and 

CCNE1 (Figure 6A). Furthermore, functional enrichment analyses of CBX7 negatively and positively coexpressed 

genes were conducted separately. Although we did not find any biological processes and pathways significantly 

associated with CBX7 positively coexpressed genes, GO analysis revealed that cell cycle-, DNA replication-, and 

mitosis-related biological processes (Figure 6B) and cyclin-dependent protein kinase activity (Supplementary 

Figure 3) were significantly overrepresented within the set of CBX7 negatively coexpressed genes (FDR < 0.05). 

Besides, KEGG analysis showed that cell cycle- and DNA replication-related pathways were also enriched with 

CBX7 negatively coexpressed genes (FDR < 0.05) (Figure 6C). These observations were further confirmed by the 

Reactome pathway analysis (Supplementary Figure 4). To further discover which transcription factors 

cooperating with CBX7 to regulate these genes, we conducted transcription factor enrichment analysis and 

identified the E2F family of transcription factors significantly associated with CBX7 negatively coexpressed genes 

(Supplementary Figure 5). Finally, we found that loss of CBX7 expression significantly increases aneuploidy 

score (p < 1.0E-10) (Figure 7A), fraction genome altered (p < 1.0E-10) (Figure 7B), MSI sensor score (p < 1.0E-

10) (Figure 7C), mutation count (p < 1.0E-10) (Figure 7D), and tumor mutation burden (TMB) (p < 1.0E-10) 

(Figure 7E). These findings suggest that CBX7 is a tumor suppressor by suppressing the cell cycle and maintaining 

genome integrity. 

 
Figure 6. Functional analysis of CBX7 negatively coexpressed genes.  

(A) Negative correlation between expression of CBX7 and cell cycle genes. The genes highlighted in red in the 

cell cycle pathway indicate they are significantly or negatively coexpressed with CBX7 (left panel). The dot plots 
show some representative genes (right panels). The p values were obtained from Spearman correlation analysis. 

(B) The biological processes enriched within CBX7 negatively coexpressed genes. (C) The KEGG pathways 

enriched within CBX7 negatively coexpressed genes. 
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Figure 7. Loss of CBX7 expression increases genome instability.  

(A) Aneuploidy score. (B) Fraction of genome altered. (C) MSI sensor score. (D) Mutation count. (E) Tumor 

mutation burden (nonsynonymous). The p values were obtained from the Wilcoxon test. 

 

DISCUSSION 

We used an integrative multiomics approach to systematically assess the potential role and function of CBX7 in 

BC. Our results showed that low expression of CBX7 in BCs is due to genetic and epigenetic alteration. The CBX7 

locus is frequently deleted, and frequent promoter hypermethylation of CBX7 is detected in BCs. These genetic 

and epigenetic changes lead to the downregulation of CBX7 in BCs. Moreover, loss of CBX7 expression has been 

reported in primary human tumors of the blood [14], brain [22], head and neck [16], lung [20], skin [17], stomach 

[21], and ovary [15]. Moreover, the knockout of the Cbx7 gene in mice resulted in the spontaneous development 

of lung and liver tumors [26]. These findings indicate that CBX7 is a general tumor suppressor gene in human 

cancer. 

We demonstrated that patients with BC with higher expression levels of CBX7 had significantly longer OS, DFS, 

and DMFS independent of ER status and PAM50 molecular subtype, suggesting that CBX7 independently adds 

clinical value to stratify patients to inform treatment and care. These results are consistent with the fact that CBX7 

regulates the sensitivity to cancer treatments [35]. For example, low expression of CBX7 makes cancer cells 

sensitive to triciribine and rapamycin treatment but resistant to GSK1487371 and ICRF-193 treatment [35]. 

Therefore, CBX7 may serve as a biomarker for selecting patients for specific therapies. Significant association 

with DMFS suggests that CBX7 participates in the regulation of cancer metastasis. CBX7 has been shown to 

regulate the epithelial-mesenchymal transition by sustaining the expression of the E-cadherin gene [36]. Moreover, 

a recent study showed that CBX7 inhibits metastasis in basal-like BC by regulating the TWIST1/EPHA2 pathway 

[37]. Therefore, CBX7 plays an essential role in cancer progression and impacts the prognosis of cancer patients. 

Our gene coexpression analysis revealed that CBX7 negatively coexpressed with many cell cycle and proliferation 

genes, including CCNE1, consistent with findings in the Cbx7 knockout model where knockout of the Cbx7 gene 

led to upregulated expression of multiple cell cycle components [26]. We discovered the possibility that CBX7 

cooperates with the E2F family of transcription factors to regulate these genes through transcription factor 

enrichment analysis, consistent with the E2F function regulating the cell cycle [38]. Interestingly, a recent study 

revealed a distinct role of two isoforms of CBX7 (p36CBX7 and p22CBX7) in cell proliferation [39]. In particular, 

p22CBX7 potentially interacts with cell cycle regulators [40]. We found that low expression of CBX7 increases 

genome instability, suggesting that its loss may lead to misregulation of the cell cycle and subsequently cause 

chromosomal instability. Taking it all together, we concluded that CBX7 plays a tumor-suppressive role by 

regulating the cell cycle and maintaining genome integrity. 

Overall, the findings in this study increase our understanding of the function and role of CBX7 in carcinogenesis, 

which needs further investigation by experimental approaches. 

 

CONCLUSION 

Integrative omics analysis of the CBX7 gene reveals its tumor-suppressive function through regulating the cell 

cycle and maintaining genome integrity, and CBX7 expression is a prognostic factor for patients with BC.  
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