Immunological Insights of Bat Coexistence with Viruses and beyond: A Holistic Review
PDF

Keywords

Bat
Bat-human Interactions
Coronaviruses
SARS-CoV-2
Co-existence
Defense mechanisms
Spillover

How to Cite

Patel, K. ., Kumar, S., Chand, G. B., & Azad, G. K. (2022). Immunological Insights of Bat Coexistence with Viruses and beyond: A Holistic Review. Biology Insights. Retrieved from https://mediterraneanjournals.com/index.php/bi/article/view/595

Abstract

Bats are the reservoir host of the novel coronavirus/SARS-CoV-2. Bats are known to host hundreds of viruses, although they remain unharmed. Scientific evidence revealed that bats have various immunological specializations that enabled them to remain unaffected to coronaviruses. This manuscript highlights the aspects of bats’ defense mechanism against the viral load and their unique adaptability. Its ability to serve as propagating ground for viruses is favored by its extraordinary physiological traits and unique immune responses, including constitutive active interferons (IFNs), dampened inflammasome response, reduced DNA sensing mechanisms, and unique B and T cell components.
Furthermore, bats have evolved with their efficient mode of oxidative phosphorylation, loss of PYHIN gene family, and positive selection for DNA damage checkpoints. These multiple mechanisms are detrimental to the viral co-existence in bats and spillover events. Furthermore, we have discussed future directions to enhance knowledge and understanding of bat-human interactions and the genetic diversity of bat-borne viruses, which will play a crucial role in preventing future outbreaks.

PDF

References

Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J Neuroimmune Pharmacol. 2020 ; 15 :359-386. https://doi.org/10.1007/s11481-020-09944-5

International Committee on Taxonomy of Viruses Executive Committee. The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nat Microbiol. 2020 May;5(5):668-674. https://doi.org/10.1038/s41564-020-0709-x

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020 Apr;26(4):450-452. https://doi.org/10.1038/s41591-020-0820-9

Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018; 100:163-188. https://doi.org/10.1016/bs.aivir.2018.01.001

Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016 Jun; 24(6):490-502. https://doi.org/10.1016/j.tim.2016.03.003

Latif AA, Mukaratirwa S. Zoonotic origins and animal hosts of coronaviruses causing human disease pandemics: A review. Onderstepoort J Vet Res. 2020 Dec 21;87(1):e1-e9. https://doi.org/10.4102/OJVR.V87I1.1895

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-273. https://doi.org/10.1038/s41586-020-2012-7

Cagliani R, Forni D, Clerici M, Sironi M. Computational Inference of Selection Underlying the Evolution of the Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2. J Immunol. 2011;186(5):3138-47.https://doi.org/10.1128/jvi.00411-20

Zhou P, Cowled C, Todd S, Crameri G, Virtue ER, Marsh GA, et al. Type III IFNs in Pteropid Bats: Differential Expression Patterns Provide Evidence for Distinct Roles in Antiviral Immunity, J. Immunol. (2011). https://doi.org/10.4049/jimmunol.1003115

Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D, Bryden WL, et al. Ecological dynamics of emerging bat virus spillover. Proc Biol Sci. 2015 Jan 7;282(1798):20142124. https://doi.org/10.1098/rspb.2014.2124

Streicker DG, Gilbert AT. Contextualizing bats as viral reservoirs. Science. 2020; 370(6513):172-173. https://doi.org/10.1126/science.abd4559

Luis AD, Hayman DT, O'Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc Biol Sci. 2013; 280(1756):20122753. https://doi.org/10.1098/rspb.2012.2753

Han HJ, Wen HL, Zhou CM, Chen FF, Luo LM, Liu JW, et al. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 2015 Jul 2; 205:1-6. https://doi.org/10.1016/j.virusres.2015.05.006

Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006 Jul;19(3):531-45. https://doi.org/10.1128/CMR.00017-06

Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses, Viruses. 2019 Jan 9; 11(1):41. https://doi.org/10.3390/v11010041

Hayman DT. Bats as Viral Reservoirs. Annu Rev Virol. 2016 Sep 29;3(1):77-99. https://doi.org/10.1146/annurev-virology-110615-042203

Wong S, Lau S, Woo P, Yuen KY. Bats as a continuing source of emerging infections in humans. Rev Med Virol. 2007 Mar-Apr;17(2):67-91. https://doi.org/10.1002/rmv.520

Thomas SP. Metabolism during flight in two species of bats, Phyllostomus hastatus and Pteropus gouldii. J Exp Biol. 1975 Aug;63(1):273-93. https://doi.org/10.1242/jeb.63.1.273

Irving AT, Ahn M, Goh G, Anderson DE, Wang LF. Lessons from the host defences of bats, a unique viral reservoir. Nature. 2021 Jan;589(7842):363-370. https://doi.org/10.1038/s41586-020-03128-0

Thomas SP, Suthers RA. The Physiology and Energetics of Bat Flight. J Exp Biol. 1972; 57(2): 317-335. https://doi.org/10.1242/jeb.57.2.317

Breed AC, Breed MF, Meers J, Field HE. Evidence of endemic hendra virus infection in flying-foxes (pteropus conspicillatus)-implications for disease risk management. PLoS One. 2011; 6(12):e28816. https://doi.org/10.1371/journal.pone.0028816

Kacprzyk J, Hughes GM, Palsson-Mcdermott EM, Quinn SR, Puechmaille SJ, O’Neill LAJ, et al. A Potent Anti-Inflammatory Response in Bat Macrophages May Be Linked to Extended Longevity and Viral Tolerance. Acta Chiropterolog. 2017;19(2):219-228. https://doi.org/10.3161/15081109ACC2017.19.2.001

O'Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DT, Luis AD, et al. Wood, Bat flight and zoonotic viruses. Emerg Infect Dis. 2014 May;20(5):741-5. https://doi.org/10.3201/eid2005.130539

De La Cruz-Rivera PC, Kanchwala M, Liang H, Kumar A, Wang LF, Xing C, et al. The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. J Immunol. 2018 Jan 1;200(1):209-217. https://doi.org/10.4049/jimmunol.1701214

Mandl JN, Schneider C, Schneider DS, Baker ML. Going to bat(s) for studies of disease tolerance. Front Immunol. 2018 Sep 20; 9:2112. https://doi.org/10.3389/fimmu.2018.02112

Kepler TB, Sample C, Hudak K, Roach J, Haines A, Walsh A, et al. Ramsburg, Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler. BMC Genomics. 2010 Jul 21;11:444. https://doi.org/10.1186/1471-2164-11-444

Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, et al Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in batsProc Natl Acad Sci U S A. 2016 Mar 8;113(10):2696-701. https://doi.org/10.1073/pnas.1518240113

Beltz LA. Bat Immunology. in: Bats Hum. Heal. 2017. https://doi.org/10.1002/9781119150060.ch1

Zhou P, Cowled C, Mansell A, Monaghan P, Green D, Wu L, et al. IRF7 in the Australian black flying fox, Pteropus alecto: Evidence for a unique expression pattern and functional conservation. PLoS One. 2014 Aug 6;9(8):e103875. https://doi.org/10.1371/journal.pone.0103875

Forni D, Cagliani R, Clerici M, Sironi M. Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol. 2017 Jan;25(1):35-48. https://doi.org/10.1016/j.tim.2016.09.001

Banerjee A, Rapin N, Bollinger T, Misra V. Lack of inflammatory gene expression in bats: A unique role for a transcription repressor. Sci Rep. 2017 May 22;7(1):2232. https://doi.org/10.1038/s41598-017-01513-w

Schad J, Voigt CC. Adaptive evolution of virus-sensing toll-like receptor 8 in bats, Immunogenetics. 2016 Nov;68(10):783-795. https://doi.org/10.1007/s00251-016-0940-z

O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signaling. Nat Rev Immunol. 2007 May;7(5):353-64. https://doi.org/10.1038/nri2079

Majer O, Liu B, Barton GM. Nucleic acid-sensing TLRs: trafficking and regulation, Curr Opin Immunol. 2017 Feb;44:26-33. https://doi.org/10.1016/j.coi.2016.10.003

Cowled C, Baker M, Tachedjian M, Zhou P, Bulach D, Wang LF. Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Dev Comp Immunol. 2011 Jan;35(1):7-18. https://doi.org/10.1016/j.dci.2010.07.006

Iha K, Omatsu T, Watanabe S, Ueda N, Taniguchi S, Fujii H, et al. Molecular cloning and expression analysis of bat toll-like receptors 3, 7 and 9. J Vet Med Sci. 2010 Feb;72(2):217-20. https://doi.org/10.1292/jvms.09-0050

Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol. 2007 Apr 23;177(2):265-75. https://doi.org/10.1083/jcb.200612056

Escalera-Zamudio M, Zepeda-Mendoza ML, Loza-Rubio E, Rojas-Anaya E, Méndez-Ojeda ML, Arias CF, et al. The evolution of bat nucleic acid-sensing Toll-like receptors. Mol Ecol. 2015 Dec;24(23):5899-909. https://doi.org/10.1111/mec.13431

Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol. 2019 May;4(5):789-799. https://doi.org/10.1038/s41564-019-0371-3

Asefa B, Klarmann KD, Copeland NG, Gilbert DJ, Jenkins NA, Keller JR. The interferon-inducible p200 family of proteins: A perspective on their roles in cell cycle regulation and differentiation, Blood Cells Mol Dis. 2004 Jan-Feb; 32(1):155-67. https://doi.org/10.1016/j.bcmd.2003.10.002

Cridland JA, Curley EZ, Wykes MN, Schroder K, Sweet MJ, Roberts TL, et al. The mammalian PYHIN gene family: Phylogeny, evolution and expression. BMC Evol Biol. 2012 Aug 7;12:140. https://doi.org/10.1186/1471-2148-12-140

Connolly DJ, Bowie AG. The emerging role of human PYHIN proteins in innate immunity: Implications for health and disease. Biochem Pharmacol. 2014 Dec 1;92(3):405-14. https://doi.org/10.1016/j.bcp.2014.08.031

Ahn M, Cui J, Irving AT, Wang LF. Unique loss of the PYHIN gene family in bats amongst mammals: Implications for inflammasome sensing. Sci Rep. 2016 https://doi.org/10.1038/srep21722

Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling, Nature. 2008;455:674-678. https://doi.org/10.1038/nature07317

Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, et al. The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity. 2008 Oct 17; 29(4):538-50. https://doi.org/10.1016/j.immuni.2008.09.003

Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013 Jan;14(1):19-26. https://doi.org/10.1038/ni.2491

Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type i interferon-dependent innate immunity. Nature. 2009 Oct 8; 461(7265):788-92. https://doi.org/10.1038/nature08476

Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW, et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun. 2011 Feb;79(2):688-94. https://doi.org/10.1128/IAI.00999-10

Nakhaei P, Hiscott J, Lin R. STING-ing the antiviral pathway. J Mol Cell Biol. 2010 Jun;2(3):110-2. https://doi.org/10.1093/jmcb/mjp048

Bosso M, Kirchhoff F. Emerging Role of PYHIN Proteins as Antiviral Restriction Factors. Viruses. 2020 Dec 18;12(12):1464. https://doi.org/10.3390/v12121464

Brisse M, Ly H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front Immunol. 2019 Jul 17; 10:1586. https://doi.org/10.3389/fimmu.2019.01586

Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell. 2014 May;5(5):369-81. https://doi.org/10.1007/s13238-014-0026-3

Siu KL, Chan CP, Kok KH, Chiu-Yat Woo P, Jin DY. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol. 2014 Mar;11(2):141-9. https://doi.org/10.1038/cmi.2013.61

Cowled C, Baker ML, Zhou P, Tachedjian M, Wang LF. Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto. Dev Comp Immunol. 2012 Apr;36(4):657-64. https://doi.org/10.1016/j.dci.2011.11.008

Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003 Jul; 17(10):1195-214. https://doi.org/10.1096/fj.02-0752rev

Adelman R, Saul RL, Ames BN. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2706-8. https://doi.org/10.1073/pnas.85.8.2706

Au WC, Moore PA, LaFleur DW, Tombal B, Pitha PM. Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes. J Biol Chem. 1998 Oct 30;273(44):29210-7. https://doi.org/10.1074/jbc.273.44.29210

Marié I, Durbin JE, Levy DE. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 1998 Nov 16;17(22):6660-9. https://doi.org/10.1093/emboj/17.22.6660

Nonkwelo C, Ruf IK, Sample J. Interferon-independent and -induced regulation of Epstein-Barr virus EBNA-1 gene transcription in Burkitt lymphoma. J Virol. 1997 Sep;71(9):6887-97. https://doi.org/10.1128/jvi.71.9.6887-6897.1997

Zhang L, Pagano JS. IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency. Mol Cell Biol. 1997 Oct;17(10):5748-57. https://doi.org/10.1128/mcb.17.10.5748

Verhelst J, Hulpiau P, Saelens X. Mx Proteins: Antiviral Gatekeepers That Restrain the Uninvited. Microbiol Mol Biol Rev. 2013 Dec;77(4):551-66. https://doi.org/10.1128/mmbr.00024-13

Nakayama M, Yazaki K, Kusano A, Nagata K, Hanai N, Ishihama A. Structure of mouse Mx1 protein. Molecular assembly and GTP-dependent conformational change. J Biol Chem. 1993 Jul 15;268(20):15033-8. https://doi.org/10.1016/s0021-9258(18)82434-6

Janzen C, Kochs G, Haller O. A Monomeric GTPase-Negative MxA Mutant with Antiviral Activity. J Virol. 2000 Sep;74(17):8202-6. https://doi.org/10.1128/jvi.74.17.8202-8206.2000

Fuchs J, Hölzer M, Schilling M, Patzina C, Schoen A, Hoenen T, et al. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses. J Virol. 2017 Jul 12; 91(15):e00361-17. https://doi.org/10.1128/jvi.00361-17

Munster VJ, Adney DR, van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S,Bowen, et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep. 2016 Feb 22;6:21878. https://doi.org/10.1038/srep21878

Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science. 2013 Jan 25;339(6118):456-60. https://doi.org/10.1126/science.1230835

Subudhi S, Rapin N, Misra V. Immune system modulation and viral persistence in bats: Understanding viral spillover. Viruses. 2019 Feb 23;11(2):192. https://doi.org/10.3390/v11020192

Periasamy P, Hutchinson PE, Chen J, Bonne I, Shahul Hameed SS, Selvam P, et al. Studies on B Cells in the Fruit-Eating Black Flying Fox (Pteropus alecto). Front Immunol. 2019 Mar 14;10:489. https://doi.org/10.3389/fimmu.2019.00489

Baker ML, Schountz T, Wang LF. Antiviral Immune Responses of Bats: A Review. Zoonoses Public Health. 2013 Feb;60(1):104-16. https://doi.org/10.1111/j.1863-2378.2012.01528.x

Dobson AP. What links bats to emerging infectious diseases? Science. 2005 Oct 28;310(5748):628-9. https://doi.org/10.1126/science.1120872

Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for peptide vaccination. Front Immunol. 2014 Apr 16;5:171. https://doi.org/10.3389/fimmu.2014.00171

Mueller SN, Rouse BT. Immune responses to viruses. Clin Immunol. 2008:421-431. https://doi.org/10.1016/B978-0-323-04404-2.10027-2

Baker ML, Tachedjian M, Wang LF. Immunoglobulin heavy chain diversity in Pteropid bats: Evidence for a diverse and highly specific antigen binding repertoire. Immunogenetics. 2010 Mar;62(3):173-84. https://doi.org/10.1007/s00251-010-0425-4

Bratsch S, Wertz N, Chaloner K, Kunz TH, Butler JE. The little brown bat, M. lucifugus, displays a highly diverse VH, DH and JH repertoire but little evidence of somatic hypermutation. Dev Comp Immunol. 2011 Apr; 35(4):421-30. https://doi.org/10.1016/j.dci.2010.06.004

Butler JE, Wertz N, Zhao Y, Zhang S, Bao Y, Bratsch S, et al. The two suborders of chiropterans have the canonical heavy-chain immunoglobulin (Ig) gene repertoire of eutherian mammals. Dev Comp Immunol. 2011 Mar; 35(3):273-84. https://doi.org/10.1016/j.dci.2010.08.011

Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. Novel Insights Into Immune Systems of Bats. Front Immunol. 2020 Jan 24; 11:26. https://doi.org/10.3389/fimmu.2020.00026

Martínez Gómez JM, Periasamy P, Dutertre CA, Irving AT, Ng JH, Crameri G, et al. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Sci Rep. 2016 Nov 24; 6:37796. https://doi.org/10.1038/srep37796

Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, et al. Bone marrow and the control of immunity. Cell Mol Immunol. 2012 Jan;9(1):11-9. https://doi.org/10.1038/cmi.2011.47

Bofill M, Janossy G, Lee CA, MacDonald-Burns D, Phillips AN, Sabin C, et al. Laboratory control values for CD4 and CD8 T lymphocytes. Implications for HIV‐1 diagnosis. Clin Exp Immunol. 1992 May; 88(2):243-52. https://doi.org/10.1111/j.1365-2249.1992.tb03068.x

Muller GC, Gottlieb MG, Luz Correa B, Gomes Filho I, Moresco RN, Bauer ME. The inverted CD4: CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell Immunol. 2015 Aug;296(2):149-54. https://doi.org/10.1016/j.cellimm.2015.05.006

Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, et al. Distribution and Compartmentalization of Human Circulating and Tissue-Resident Memory T Cell Subsets. Immunity. 2013 Jan 24;38(1):187-97. https://doi.org/10.1016/j.immuni.2012.09.020

Abramo JM, Reynolds A, Crisp GT, Weurlander M, Söderberg M, Scheja M, et al. Individuality in music performance. Assess Eval High Educ. 2012; 37: 435.

Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: Conformational plasticity in antigen presentation. Front Immunol. 2017 Mar 17;8:292. https://doi.org/10.3389/fimmu.2017.00292

Liu MC, Liao WY, Buckley KM, Yang SY, Rast JP, Fugmann SD. AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nat Commun. 2018 May 16;9(1):1948. https://doi.org/10.1038/s41467-018-04273-x

Chen H, Lilley CE, Yu Q, Lee DV, Chou J, Narvaiza I, et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol. 2006 Mar 7;16(5):480-5. https://doi.org/10.1016/j.cub.2006.01.031

Renard M, Henry M, Guétard D, Vartanian JP, Wain-Hobson S. APOBEC1 and APOBEC3 Cytidine Deaminases as Restriction Factors for Hepadnaviral Genomes in Non-Humans In Vivo. J Mol Biol. 2010 Jul 16;400(3):323-34. https://doi.org/10.1016/j.jmb.2010.05.029

Hayward JA, Tachedjian M, Cui J, Cheng AZ, Johnson A, Baker ML, et al. Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 gene complexity. Mol Biol Evol. 2018 Jul 1;35(7):1626-1637. https://doi.org/10.1093/molbev/msy048

Ng JH, Tachedjian M, Deakin J, Wynne JW, Cui J, Haring V, et al. Evolution and comparative analysis of the bat MHC-I region. Sci Rep. 2016 Feb 15;6:21256. https://doi.org/10.1038/srep21256

Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8666-71. https://doi.org/10.1073/pnas.0912613107

Murray KA, Daszak P. Human ecology in pathogenic landscapes: Two hypotheses on how land use change drives viral emergence. Curr Opin Virol. 2013 Feb;3(1):79-83. https://doi.org/10.1016/j.coviro.2013.01.006

Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, et al. Ecology of zoonoses: Natural and unnatural histories. Lancet. 2012 Dec 1;380(9857):1936-45. https://doi.org/10.1016/S0140-6736(12)61678-X

Dobson A. Population dynamics of pathogens with multiple host species. Am Nat. 2004 Nov;164 Suppl 5:S64-78. https://doi.org/10.1086/424681

Cockram MS. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare. Vet J. 2002;164(1):77. https://doi.org/10.1053/tvjl.2001.0558

Sohayati AR, Hassan L, Sharifah SH, Lazarus K, Zaini CM, Epstein JH, Shamsyul Naim N, et al. Evidence for Nipah virus recrudescence and serological patterns of captive Pteropus vampyrus. Epidemiol Infect. 2011 Oct;139(10):1570-9. https://doi.org/10.1017/S0950268811000550

Gerow CM, Rapin N, Voordouw MJ, Elliot M, Misra V, Subudhi S. Arousal from hibernation and reactivation of Eptesicus fuscus gammaherpesvirus (EfHV) in big brown bats. Transbound Emerg Dis. 2019 Mar;66(2):1054-1062. https://doi.org/10.1111/tbed.13102

Lieberman PM. Keeping it quiet: Chromatin control of gammaherpesvirus latency. Nat Rev Microbiol. 2013 Dec;11(12):863-75. https://doi.org/10.1038/nrmicro3135

Teeling EC, Vernes SC, Dávalos LM, Ray DA, Gilbert MTP, Myers E. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annu Rev Anim Biosci. 2018 Feb 15;6:23-46. https://doi.org/10.1146/annurev-animal-022516-022811

Crameri G, Todd S, Grimley S, McEachern JA, Marsh GA, Smith C, et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One. 2009 Dec 11;4(12):e8266. https://doi.org/10.1371/journal.pone.0008266

Moratelli R, Calisher CH. Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? Mem Inst Oswaldo Cruz. 2015 Feb;110(1):1-22. https://doi.org/10.1590/0074-02760150048

Lee AK, Kulcsar KA, Elliott O, Khiabanian H, Nagle ER, Jones ME, et al. De novo transcriptome reconstruction and annotation of the Egyptian rousette bat. BMC Genomics. 2015 Dec 7;16:1033. https://doi.org/10.1186/s12864-015-2124-x

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Azad GK et al